KAJI EKSPERIMEN MESIN KOMPRESI UDARA DENGAN MEMODIFIKASI GIGI SENTRIS MOTOR BENSIN 4-TAK SEBAGAI SOLUSI ALTERNATIF KENDARAAN BERMOTOR BEBAS EMISI

Experiment Study of Air Compression Engines with Modification of 4-Stroke Gasoline Engine Centrical Gear as an Alternative Solution of Zero Emission Motor Vehicles

  • Darwin Rio Budi Syaka Universitas Negeri Jakarta
  • Triyono Universitas Negeri Jakarta
  • Mohammad Joko Triyanto Universitas Negeri Jakarta
Keywords: Air Pressure, Compressed Air Engine, Performance, Zero Emissions

Abstract

The compressed air engine is an environmentally friendly alternative with the advantages of zero emissions and a fast-charging process making it suitable for application as the main power source in vehicles. Previous research on compressed air power engines that modify the internal combustion engine was carried out by changing the shape of the camshaft. This is complicated, so another solution is to change the gear-centric ratio. However, research on centric gear modification is still not available. Therefore, this study aims to determine the performance of a compressed air engine with centric gear modification. This research presents an experimental study of a piston engine driven by compressed air where the test equipment is a 4-stroke internal combustion engine which is converted to a 2-stroke by modifying the centric gear ratio from 2:1 to 1:1. The torque produced by the engine is measured using a prony brake where variations in a brake pressure range from 0.4 bar to 2 bar with a change in brake pressure every 0.2. The variations in air pressure between 3 bar - 9 bar with a change in air pressure of 1 bar. The resulting engine speed is measured using a tachometer. The results of this study indicate that air pressure is the main factor affecting the performance of a compressed air engine, the greater the pressure of the compressed air, the greater the power generated. The best performance of the compressed air engine is at the highest air pressure experiment, which is 8 bar by producing 2.36 kW of power at 724.33 rpm engine speed with 31.09 Nm of torque, but the highest torque that can be obtained is 34.55 Nm at 618.67 rpm.

References

A. H. Ingle, R. Ambatkar, R. Badwaik, and D. Pise, “Literature Review Paper on the Compressed Air Vehicle with Air Motor,” Int. J. Eng. Res. Technol., vol. 4, no. 30, pp. 1–3, 2016.

S. Kumar, P. K. Pradhan, Z. H. Khan, and B. A. Kumar, “Design and Developing of Compressed Air Engine,” Int. Res. J. Eng. Technol., vol. 04, no. 05, pp. 1468–1474, 2017.

A. Subiantoro, K. K. Wong, and K. T. Ooi, “Exergy Analysis of the Revolving Vane Compressed Air Engine,” Int. J. Rotating Mach., vol. 2016, 2016, doi: 10.1155/2016/5018467.

Q. Yu, X. Hao, and X. Tan, “Performance analysis of an innovative kind of two-stage piston type expansion air engine,” Adv. Mech. Eng., vol. 10, no. 5, pp. 1–10, 2018, doi: 10.1177/1687814018773860.

Q. Yu, M. Cai, Y. Shi, and Z. Fan, “Optimization of the energy efficiency of a piston compressed air engine,” Stroj. Vestnik/Journal Mech. Eng., vol. 60, no. 6, pp. 395–406, 2014, doi: 10.5545/sv-jme.2013.1383.

A. Papson, F. Creutzig, and L. Schipper, “Compressed air vehicles: Drive-cycle analysis of vehicle performance, environmental impacts, and economic costs,” Transp. Res. Rec., no. 2191, pp. 67–74, 2010, doi: 10.3141/2191-09.

Y. Fang, Y. Lu, A. P. Roskilly, and X. Yu, “A review of compressed air energy systems in vehicle transport,” Energy Strateg. Rev., vol. 33, no. November 2020, p. 100583, 2021, doi: 10.1016/j.esr.2020.100583.

R. Marshall, “The Compressed Air Energy Equation,” Fluid Power J., 2017.

K. L. Rixon, M. S. V, K. S. Prajith, K. Sarath, S. Sreejith, and P. Sreeraj, “Fabrication of Compressed Air Bike,” pp. 1863–1866, 2016.

I. D. Reza Alizade Evrin, “Experimental investigation of a compressed air vehicle prototype with phase change materials for heat recovery,” Energy Storage, vol. 2, no. 5, 2020.

D. R. B. Syaka, U. F. Amaly, and A. Kholil, “Mesin Kompresi Udara Untuk Aplikasi Alat Transportasi Ramah Lingkungan Bebas Polusi,” Proceeding Semin. Nas. Tah. Tek. Mesin XIV (SNTTM XIV), no. Snttm Xiv, pp. 7–8, 2015, [Online]. Available: http://eprints.ulm.ac.id/602/%0Ahttp://eprints.ulm.ac.id/602/1/KE-21.pdf.

G. Sujaykumar, R. M. Sushiledra, and V. Nayak, “Compressed Air Engine with Self Compression Arrangement System,” Energy and Power, vol. 6, pp. 33–35, 2016, doi: 10.5923/c.ep.201601.06.

D. R. Budi syaka, F. Bastian, and A. Kholil, “Studi Eksperimental Kinerja Mesin Kompresi Udara Satu Langkah Dengan Variasi Sudut Pembukaan Selenoid,” J. Konversi Energi dan Manufaktur, vol. 3, no. 2, pp. 52–58, 2016, doi: 10.21009/jkem.3.2.1.

S. Sumadi and S. P. Sutisna, “Perancangan Sistem Kontrol Mobil Menggunakan Compressed Air Engine Sebagai Penggerak Mula,” Almikanika, vol. 1, no. 1, pp. 1–4, 2019, [Online]. Available: http://150.107.142.43/index.php/ALMIKANIKA/article/view/1565%0Ahttp://150.107.142.43/index.php/ALMIKANIKA/article/download/1565/1344.

J. U. Goghari, P. Chetan, and V. Jainil, “Design of Small Capacity Automobile Engine to Run on Compressed Air,” vol. 3, no. 03, pp. 1102–1104, 2015.

C. Y. Huang, C. K. Hu, C. J. Yu, and C. K. Sung, “Experimental investigation on the performance of a compressed-air driven piston engine,” Energies, vol. 6, no. 3, pp. 1731–1745, 2013, doi: 10.3390/en6031731.

B. Saivardhan, “Compressed air engine masseur,” Laryngoscope, vol. 7, no. 1, pp. 75–75, 2017, doi: 10.1288/00005537-189907000-00048.

N. Parashar, S. M. Ali, S. Chauhan, and R. Saini, “Design and Analysis of Compressed Air Engine,” Int. J. Eng. Res. Technol., vol. 3, no. 6, pp. 693–696, 2014.

Q. Yu and M. Cai, “Experimental Analysis of a Compressed Air Engine,” J. Flow Control. Meas. & Vis., vol. 03, no. 04, pp. 144–153, 2015, doi: 10.4236/jfcmv.2015.34014.

Y. W. Wang, J. J. You, C. K. Sung, and C. Y. Huang, “The applications of piston type compressed air engines on motor vehicles,” Procedia Eng., vol. 79, no. 1st ICM, pp. 61–65, 2014, doi: 10.1016/j.proeng.2014.06.311.

W. Hidayat, Motor bensin modern, 1st ed. Jakarta: Rineka Cipta, 2012.

Published
2022-07-20
How to Cite
[1]
Darwin Rio Budi Syaka, Triyono, and M. J. Triyanto, “KAJI EKSPERIMEN MESIN KOMPRESI UDARA DENGAN MEMODIFIKASI GIGI SENTRIS MOTOR BENSIN 4-TAK SEBAGAI SOLUSI ALTERNATIF KENDARAAN BERMOTOR BEBAS EMISI”, J. Konversi Energi dan Manufaktur, vol. 7, no. 2, pp. 87 - 95, Jul. 2022.
Section
Articles