THE EFFECT OF POLY (ETHYLENE GLYCOL) ON THE PHOTOLUMINESCENCE PROPERTIES OF CARBON DOTS FROM CASSAVA PEELS SYNTHESIZED BY HYDROTHERMAL METHODS

  • Permono Adi Putro Universitas Muhammadiyah Prof. Dr. Hamka
  • Liszulfah Roza Physics Education, Faculty of Teacher Education and Science, University of Muhammadiyah Prof. Dr. Hamka, Pasar Rebo, East Jakarta 130830 Indonesia
  • Isnaeni Isnaeni Research Center for Physics, Indonesia Institute of Science, Building 442, Puspitek Serpong, South Tangerang, Banten 15314 Indonesia
Keywords: carbon dots, cassava peels, photoluminescence

Abstract

Carbon dots (C-dots) have been successfully synthesized from cassava peels using the hydrothermal method. The C-dots are further passivated using poly (ethylene glycol) (PEG) with a variation of the volume of 0.5 ml, 1.0 ml, and 1.5 ml. The properties of photoluminescence C-dots before and after PEG were characterized using photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectrophotometers. PEG succeeded in influencing PL C-dots properties, such as peak wavelength, PL intensity, and electron time decay. The addition of 0.5 ml of PEG to C-dots is the optimum condition and best with the peak wavelength, the PL intensity and, time decay electron is 507.52 nm, 5302 a.u, and 3.794031133 ns, respectively.

References

[1] J. Yu, J. Nan, and H. Zeng, “Size control of nanoparticles by multiple-pulse laser ablation,” Appl. Surf. Sci., vol. 402, pp. 330–335, 2017.

[2] M. Algarra, et al., “Luminescent carbon nanoparticles: Effects of chemical functionalization, and evaluation of Ag+ sensing properties,” J. Mater. Chem. A, vol. 2, no. 22, pp. 8342–8351, 2014.

[3] X. Xu, et al., “Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments,” J. Am. Chem. Soc., vol. 126, no. 40, pp. 12736–12737, 2004.

[4] S. Sugiarti and N. Darmawan, “Synthesis of Fluorescence Carbon Nanoparticles from Ascorbic Acid,” Indonesian Journal of Chemistry, 15(2), pp. 141-145, 2015.

[5] Y. Fang, et al., “Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles,” ACS Nano, vol. 6, no. 1, pp. 400–409, 2012.

[6] V. Strauss, et al., “Carbon nanodots: Toward a comprehensive understanding of their photoluminescence,” J. Am. Chem. Soc., vol. 136, no. 49, pp. 17308–17316, 2014.

[7] L. Bao, C. Liu, Z. L. Zhang, and D. W. Pang, “Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning,” Adv. Mater., vol. 27, no. 10, pp. 1663–1667, 2015.

[8] P. Z. Z. Ngu, S. P. P. Chia, J. F. Y. Fong, and S. M. Ng, “Synthesis of carbon nanoparticles from waste rice husk used for the optical sensing of metal ions,” New Carbon Mater., vol. 31, no. 2, pp. 135–143, 2016.

[9] Isnaeni, I. Rahmawati, R. Intan, and M. Zakaria, “Photoluminescence study of carbon dots from ginger and galangal herbs using microwave technique,” J. Phys. Conf. Ser., no. 985, p. 012004, 2018.

[10] W. Liu, H. Diao, H. Chang, H. Wang, T. Li, and W. Wei, “Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging,” Sensors Actuators B Chem., vol. 241, pp. 190–198, 2017.

[11] A. Tadesse, D. R. Devi, M. Hagos, G. R. Battu, and K. Basavaiah, “Facile green synthesis of fluorescent carbon quantum dots from citrus lemon juice for live cell imaging,” Asian J. Nanosci. Mater., vol. 1, no. 1, pp. 36–46, 2018.

[12] P. A. Putro, L. Roza, and Isnaeni, “Karakterisasi sifat fotoluminisensi C-dots dari kulit ari singkong menggunakan teknik microwave,” Pros. Semin. Nas. Fis. FMIPA UNESA, vol. 2, pp. 168–173, 2018.

[13] P. A. Putro, L. Roza, and Isnaeni, “Karakterisasi sifat optik C-dots dari kulit luar singkong menggunakan teknik microwave,” J. Teknol. Technoscientia, vol. 11, no. 2, pp. 128–136, 2019.

[14] A. M. Alam, B. Y. Park, Z. K. Ghouri, M. Park, and H. Y. Kim, “Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: Excellent imaging agent for biomedical applications,” Green Chem., vol. 17, no. 7, pp. 3791–3797, 2015.

[15] A. Kumar, A. R. Chowdhuri, D. Laha, T. K. Mahto, P. Karmakar, and S. K. Sahu, “Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging,” Sensors Actuators B Chem., vol. 242, pp. 679–686, 2017.

[16] H. P. S. Castro, M. K. Pereira, V. C. Ferreira, J. M. Hickmann, and R. R. B. Correia, “Optical characterization of carbon quantum dots in colloidal suspensions,” Opt. Mater. Express, vol. 7, no. 2, pp. 5801–5806, 2017.

[17] L. Zheng, Y. Chi, Y. Dong, J. Lin, and B. Wang, “Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite,” J. Am. Chem. Soc., vol. 131, no. 13, pp. 4564–4565, 2009.

[18] H. Li, X. He, Y. Liu, H. Huang, S. Lian, S. T. Lee, and Z. Kang, “One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties,” Carbon N. Y., vol. 49, no. 2, pp. 605–609, 2011.

[19] M. Farshbaf, S. Davaran, F. Rahimi, N. Annabi, R. Salehi, and A. Akbarzadeh, “Carbon quantum dots: Recent progresses on synthesis, surface modification, and applications,” Artif. Cells, Nanomedicine, Biotechnol., vol. 46, no. 7, pp. 1331–1348, 2017.

[20] S. Sahu, B. Behera, T. K. Maiti, and S. Mohapatra, “Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-Imaging agents,” Chem. Commun., vol. 48, no. 70, pp. 8835–8837, 2012.

[21] A. Prasannan and T. Imae, “One-pot synthesis of fluorescent carbon dots from orange waste peels,” Ind. Eng. Chem. Res., vol. 52, no. 44, pp. 15673–15678, 2013.

[22] H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, and X. Yang, “Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties,” Chem. Commun., vol. 4, no. 34, pp. 5118–5120, 2009.

[23] A. Jaiswal, S. S. Ghosh, and A. Chattopadhyay, “One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol),” Chem. Commun., vol. 48, no. 3, pp. 407–409, 2012.

[24] Isnaeni, M. Y. Hanna, A. A. Pambudi, and F. H. Murdaka, “Influence of ablation wavelength and time on optical properties of laser ablated carbon dots,” AIP Conf. Proc., vol. 1801, no. 020001, pp. 1–5, 2017.

[25] Q. Li, M. Zhou, M. Yang, Q. Yang, Z. Zhang, and J. Shi, “Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices,” Nat. Commun., vol. 9, no. 734, pp. 1–8, 2018.

[26] J. R. Lakowicz, Principles of Fluorescence Spectroscopy. Springer US, 2006.

[27] T. Yoshinaga, Y. Iso, and T. Isobe, “Particulate, structural, and optical properties of D-glucose-derived carbon dots synthesized by microwave-assisted hydrothermal treatment,” ECS J. Solid State Sci. Technol., vol. 7, no. 1, pp. R3034–R3039, 2018.

[28] X. Dong, L. Wei, Y. Su, Z. Li, H. Geng, C. Yang, and Y. Zhang, “Efficient long lifetime room temperature phosphorescence of carbon dots in a potash alum matrix,” J. Mater. Chem. C, vol. 3, February, pp. 2798–2801, 2015.

[29] M. Chang, L. Li, H. Hu, Q. Hu, A. Wang, and X. Cao, “Using fractional intensities of time-resolved fluorescence to sensitively quantify NADH/NAD + with genetically encoded fluorescent biosensors,” Sci. Rep., vol. 7, no. 4209, pp. 1–9, 2017.

[30] Z. L. Wu, P. Zhang, M. X. Gao, C. F. Liu, W. Wang, F. Leng, and C. Z. Huang, “One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bio-imaging from Bombyx mori silk-natural proteins,” J. Mater. Chem. B, no. 22, pp. 2868–2873, 2013.

[31] O. Kozák, M. Sudolská, G. Pramanik, P. Cígler, M. Otyepka, and R. Zbořil, “Photoluminescent carbon nanostructures,” Chem. Mater., vol. 28, no. 12, pp. 4085–4128, 2016.

[32] A. Sachdev, I. Matai, and P. Gopinath, “Implications of surface passivation on physicochemical and bioimaging properties of carbon dots,” RSC Adv., vol. 4, no. 40, pp. 20915–20921, 2014.

[33] H. Ding, S. B. Yu, J. S. Wei, and H. M. Xiong, “Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism,” ACS Nano, vol. 10, no. 1, pp. 484–491, 2016.

[34] S. Fatimah, Isnaeni, and D. Tahir, “Sintesis dan karakterisasi fotoluminisens carbon dots berbahan dasar organik dan limbah organik,” POSITRON, vol. VII, no. 2, pp. 37–41, 2017.

[35] X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes,” ACS Nano, vol. 7, no. 12, pp. 11234–11241, 2013.

[36] B. P. Jiang, Y. X. Yu, X. L. Guo, Z. Y. Ding, B. Zhou, H. Liang, and X. C. Shen, “White-emitting carbon dots with long alkyl-chain structure: Effective inhibition of aggregation-caused quenching effect for label-free imaging of latent fingerprint,” Carbon N. Y., vol. 128, pp. 12–20, 2018.

[37] S. K. Bhunia, A. Saha, A. R. Maity, S. C. Ray, and N. R. Jana, “Carbon nanoparticle-based fluorescent bioimaging probes,” Sci. Rep., vol. 3, pp. 1473–1479, 2013.

[38] B. B. Campos, et al., “Carbon dots coated with vitamin B12 as selective ratiometric nanosensor for phenolic carbofuran,” Sensors Actuators, B Chem., vol. 239, pp. 553–561, 2017.

[39] A. Nevin, et al., “Time-resolved photoluminescence spectroscopy and imaging: new approaches to the analysis of cultural heritage and its degradation,” Sensors, vol. 14, no. 4, pp. 6338–6355, 2014.
Published
2019-04-30