INTEGRATED MEASUREMENT SYSTEM FOR ATHLETE HEALTH: HEART RATE, BLOOD OXYGEN, AND BODY TEMPERATURE MONITORING

Authors

  • M.Ilyasa Universitas Negeri Medan, Jalan Willem Iskandar Pasar V Medan Estate, Indonesia.
  • Yovhandra Ockta Universitas Negeri Padang, Air Tawar Barat, Kota Padang, Indonesia

DOI:

https://doi.org/10.21009/GJIK.153.12

Abstract

Athlete health monitoring is critical for optimizing performance and ensuring physical well-being. This study presents an integrated non-invasive system designed to measure key physiological parameters: heart rate, blood oxygen saturation (SPO2), and body temperature. Utilizing infrared LED and photodiode sensors placed on the fingertip, the system detects changes in blood volume, correlating them with heart rate fluctuations. Pulse oximetry, employing red and infrared light wavelengths, accurately measures SPO2 levels by analyzing light absorption through finger tissues. Results from testing show promising accuracy with an average error of 0.89% for SPO2 measurements and 3.095% for heart rate measurements. Body temperature readings exhibit an average error of 0.78%, underscoring the system's reliability in non-invasively monitoring temperature changes. Challenges such as environmental influences and sensor calibration are addressed to ensure consistent and precise measurements. Future enhancements may incorporate advanced signal processing techniques and artificial intelligence to further refine measurement accuracy and reliability. This integrated system holds significant potential for enhancing athlete health management, aiding in early detection of physiological anomalies, and optimizing performance through real-time health monitoring

Downloads

Download data is not yet available.

References

Ahadian, S., Civitarese, R., Bannerman, D., Mohammadi, M. H., Lu, R., Wang, E., Davenport-Huyer, L., Lai, B., Zhang, B., Zhao, Y., Mandla, S., Korolj, A., & Radisic, M. (2018). Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Advanced Healthcare Materials, 7(2). https://doi.org/10.1002/adhm.201700506
Amin, D. I., Wahyuri, A. S., Irawan, R., Welis, W., Gusni, F., Rahman, D., Budiwanto, A., & Ockta, Y. (2023). Dietary Adherence and Physical Activity : Unraveling the Threads Impacting Dietary Adherence and Physical Activity : Unraveling the Threads Impacting Blood Pressure in Hypertensive Patients. Jurnal Penelitian Pendidikan IPA, 9(Special Issue). https://doi.org/10.29303/jppipa.v9iSpecialIssue.7388
Brasil, S., Solla, D. J. F., Nogueira, R. de C., Teixeira, M. J., Malbouisson, L. M. S., & Paiva, W. da S. (2021). A novel noninvasive technique for intracranial pressure waveform monitoring in critical care. Journal of Personalized Medicine, 11(12). https://doi.org/10.3390/jpm11121302
Budidha, K., & Kyriacou, P. A. (2020). Investigating the origin of photoplethysmography using a multiwavelength monte carlo model. Physiological Measurement, 41(8). https://doi.org/10.1088/1361-6579/aba008
Einstein, A. J., Shaw, L. J., Hirschfeld, C., Williams, M. C., Villines, T. C., Better, N., Vitola, J. V., Cerci, R., Dorbala, S., Raggi, P., Choi, A. D., Lu, B., Sinitsyn, V., Sergienko, V., Kudo, T., Nørgaard, B. L., Maurovich-Horvat, P., Campisi, R., Milan, E., … Paez, D. (2021). International Impact of COVID-19 on the Diagnosis of Heart Disease. Journal of the American College of Cardiology, 77(2), 173–185. https://doi.org/10.1016/j.jacc.2020.10.054
Heaney, J., Buick, J., Hadi, M. U., & Soin, N. (2022). Internet of Things-Based ECG and Vitals Healthcare Monitoring System. Micromachines, 13(12). https://doi.org/10.3390/mi13122153
Kanwal, J. K., Coddington, E., Frazer, R., Limbania, D., Turner, G., Davila, K. J., Givens, M. A., Williams, V., Datta, S. R., & Wasserman, S. (2021). Internal State: Dynamic, Interconnected Communication Loops Distributed across Body, Brain, and Time. Integrative and Comparative Biology, 61(3), 867–886. https://doi.org/10.1093/icb/icab101
Mao, A., Zhao, L., Duan, S., Zhao, J., & Zhou, Q. (2023). The Application and Benefits of C-CHEWS in Infants with Left-to-Right Shunt Congenital Heart Disease during the Transition Period after Surgery. Alternative Therapies in Health and Medicine, 29(7), 155–159.
Nakane, M. (2020). efectos biologicos de la molécula de Oxígeno. Journal of Intensive Care, 8(95), 1–12.
Ray, D., Collins, T., Woolley, S., & Ponnapalli, P. (2023). A Review of Wearable Multi-Wavelength Photoplethysmography. IEEE Reviews in Biomedical Engineering, 16(Figure 2), 136–151. https://doi.org/10.1109/RBME.2021.3121476
Sakai-Bizmark, R., Chang, R. K. R., Martin, G. R., Hom, L. A., Marr, E. H., Ko, J., Goff, D. A., Mena, L. A., Von Kohler, C., Bedel, L. E. M., Murillo, M., Estevez, D., & Hays, R. D. (2022). Current Postlaunch Implementation of State Mandates of Newborn Screening for Critical Congenital Heart Disease by Pulse Oximetry in US. States and Hospitals. American Journal of Perinatology, 550–562. https://doi.org/10.1055/s-0042-1756327
Vavrinsky, E., Esfahani, N. E., Hausner, M., Kuzma, A., Rezo, V., Donoval, M., & Kosnacova, H. (2022). The Current State of Optical Sensors in Medical Wearables. Biosensors, 12(4), 1–40. https://doi.org/10.3390/bios12040217
Zhang, H., & Barralet, J. E. (2017). Mimicking oxygen delivery and waste removal functions of blood. Advanced Drug Delivery Reviews, 122, 84–104. https://doi.org/10.1016/j.addr.2017.02.001

Downloads

Published

2024-12-05

How to Cite

M.Ilyasa, & Ockta, Y. (2024). INTEGRATED MEASUREMENT SYSTEM FOR ATHLETE HEALTH: HEART RATE, BLOOD OXYGEN, AND BODY TEMPERATURE MONITORING. Gladi : Jurnal Ilmu Keolahragaan, 15(03), 393–404. https://doi.org/10.21009/GJIK.153.12