PELAPISAN TEMBAGA NIKEL PADA BAJA DAN PENGARUHNYA TERHADAP LAJU KOROSI
Nickel-Copper Plating on Steel and its Effect on Corrosion Rate
DOI:
https://doi.org/10.21009/JKEM.7.2.4Keywords:
Plating, Cu, Ni, Corrosion Rate, HardnessAbstract
The study was conducted to determine the effect of Cu-Ni coating on the corrosion rate of low carbon steel Ms 7210. The first stage of the study was Cu plating on the surface of the test sample with variations in coating holding times of 5, 10, 15, 20, and 25 minutes. The second stage is nickel plating for 10 minutes. The results showed that there was a decrease in the corrosion rate up to 0.36 mmpy when coating for 25 minutes. When compared with the raw material corrosion rate of 7.6 mmpy, the corrosion rate of steel after being coated is much lower. The longer the holding time of the coating, the thicker the layer formed, and the harder the surface that occurs, but it has an impact on decreasing the corrosion rate in the corrosive medium of 3.5% NaCl solution.
References
[2] H. Supriadi, “Studi Eksperimental Tentang Pengaruh Variasi Rapat Arus Pada Hard Chrome Electroplating Terhadap Karekteristik Permukaan Baja Karbon Rendah,” J. Mech., vol. 1, no. 1, pp. 1–6, 2010.
[3] Siska Titik Dwiyati, S. Syamsuir, and M. T. Pangestu, “Kehilangan Massa Lapisan Tembaga-Nikel/Tembaga-Nikel-Silikon Pada Larutan HCl,” J. Konversi Energi dan Manufaktur, vol. 7, no. 1, pp. 27–34, 2022, doi: 10.21009/jkem.7.1.4.
[4] N. Cinca and J. M. Guilemany, “Thermal spraying of transition metal aluminides: An overview,” Intermetallics, vol. 24, pp. 60–72, 2012, doi: 10.1016/j.intermet.2012.01.020.
[5] V. S. Smentkowski, “Trends in sputtering,” Prog. Surf. Sci., vol. 64, no. 1, pp. 1–58, 2000, doi: 10.1016/S0079-6816(99)00021-0.
[6] X. F. Cai, Y. Z. Huang, Y. G. Li, and L. N. Zhao, “Production process and technology development of hot-dip galvanizing,” Appl. Mech. Mater., vol. 488, pp. 61–65, 2014, doi: 10.4028/www.scientific.net/AMM.488-489.61.
[7] Syamsuir, Hamzah Fajar, Kurniawan Widodo, and Sopiyan, “Efek Pengadukan Saat Pelapisan Tembaga Pada Alumunium Terhadap Laju Korosi,” J. Konversi Energi dan Manufaktur, vol. 6, no. 1, pp. 44–48, 2019, doi: 10.21009/jkem.6.1.8.
[8] H. Supriadi and K. Fadlil, “Pengaruh Rapat Arus Dan Temperatur Elektrolit Terhadap Ketebalan Lapisan Dan Efisiensi Katoda Pada Elektroplating Tembaga Untuk Baja Karbon Sedang,” J. Mech., vol. 4, no. 1, pp. 30–37, 2013.
[9] Kenneth R. Trethewey, Korosi untuk Mahasiswa dan Rekayasawan. Jakarta: PT. Gramedia Pustaka Utama., 1991.
[10] A. P. Bayuseno, “Analisa Laju Korosi Pada Baja Untuk Material Kapal Dengan Dan Tanpa Perlindungan Cat,” Rotasi, vol. 11, no. 3, pp. 32-37–37, 2009, doi: 10.14710/rotasi.11.3.32-37.
[11] F. B. Susetyo, M. C. Fajrah, and B. Soegijono, “Effect of Electrolyte Temperature on Properties of Nickel Film Coated onto Copper Alloy Fabricated by Electroplating,” e-Journal Surf. Sci. Nanotechnol., vol. 18, pp. 223–230, 2020, doi: 10.1380/ejssnt.2020.223.
[12] F. B. Susetyo, S. T. Dwiyati, and M. T. Pangestu, “Kehilangan Massa Pada Larutan HCl Dan NaCl Baja Karbon Rendah Hasil Elektroplating Tembaga-Nikel,” J. Kaji. Tek. Mesin, vol. 4, no. 1, pp. 15–20, 2019, doi: 10.52447/jktm.v4i1.1471.