PREDICTION OF MEGATHRUST IMPACT ON SEISMIC RESPONSE IN SELEBAR DISTRICT OF BENGKULU CITY
DOI:
https://doi.org/10.21009/jpensil.v14i1.50133Keywords:
Earthquake, Seismic Response, MegathrustAbstract
Bengkulu City was hit by major earthquakes in 2000 and 2007 with magnitudes of 7.9 Mw and 8.6 Mw. In 2022 BMKG Baai Island, Bengkulu City, said that there is a potential for an earthquake with a maximum magnitude of 8.9. This study was conducted to determine the response of soil layers due to megathrust earthquake wave propagation in Selebar district, Bengkulu City. The study began with field investigations at six points. The seismic response analysis was built based on a one-dimensional wave propagation model with non-linearity. The 2007 Bengkulu-Mentawai earthquake wave with a magnitude of 8.8 Mw was applied as the input wave. PGA, acceleration response spectra, and amplification factors are presented in this study. The resulting PGA ranged from 0.328g - 0.453g. Five points experienced amplification with amplification factors of 1.093 - 1.317. The spectral acceleration has generally exceeded the applicable design spectral acceleration at a period of 0.2 seconds. The spectral accelerations have generally exceeded the applicable seismic design at short periods, with maximum values of 1.27g - 1.64g. So it is necessary to update the seismic design for building planning in Selebar District, Bengkulu City.
References
A Hashash, Y. M., Phillips, C., Groholski, D. R., A, Y. M., & A Hashash Camilo Phillips, Y. M. (2010). Mine Scholars’ Mine International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics (Vol. 8). https://scholarsmine.mst.edu/icrageesd/05icrageesd/session12/8
Agustina, S., Widia Anggraini, P., Nur Fikri, M., & Zalbuin Mase, L. (2019). Analisis Respon Seismik Area Sentral di Kota Bengkulu.
An, L., Enescu, B., Peng, Z., Miyazawa, M., Gonzalez-Huizar, H., & Ito, Y. (2024). It dynamically triggered seismicity in Japan following the 2024 Mw7. 5 Noto earthquake.
Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) Pulau Baai Kota Bengkulu. (2022). https://news.detik.com/berita/d-6254024/bmkg-ingatkan-potensi-gempa-m-8-9-dan-tsunami-15-meter-di-bengkulu.
Badan Pusat Statistik Kota Bengkulu. (2022). Kecamatan Selebar Dalam Angka 2022.
Badan Standardisasi Nasional. (2019). SNI 1726-2019: Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Nongedung. Jakarta: Standar Nasional Indonesia.
Bilek, S. L., & Lay, T. (2018). Subduction zone megathrust earthquakes. Geosphere, 14(4), 1468–1500. https://doi.org/10.1130/GES01608.1
Cortez, S. A., Velasco, A. A., Ornelas, D., & Gonzalez-Huizar, O. S. (2023). H/V Analysis in Juchitán de Zaragoza (Vol. 113, Issue 2). Earthquake. Bulletin of the Seismological Society of America.
Council, I.C. (2006). International Building Code.
Farid, M., & Mase, L. Z. (2020). Implement seismic hazard mitigation based on ground shear strain indicator for a spatial plan of Bengkulu City, Indonesia. International Journal of GEOMATE, 18, 199–207. https://doi.org/10.21660/2020.69.24759
Fathani, T. F., Adi, A. D., Pramumijoyo, S., & Karnawati, D. (n.d.). Determination of Peak Ground Acceleration at Bantul Regency, Yogyakarta Province, Indonesia,".
Hashash, Y. M. A., & Park, D. (n.d.). Non-linear one-dimensional seismic ground motion propagation in the Mississippi embayment. www.elsevier.com/locate/enggeo
Hough, S. E., Thompson, E., Parker, G. A., Graves, R. W., Hudnut, K. W., Patton, J., Dawson, T., Ladinsky, T., Oskin, M., Sirorattanakul, K., Blake, K., Baltay, A., & Cochran, E. (2020). Near-field ground motions from the July 2019 Ridgecrest, California, earthquake sequence. Seismological Research Letters, 91(3), 1542–1555. https://doi.org/10.1785/0220190279
Houng, S. E., Lee, J., & Hong, T. K. (2016). Dynamic seismic response of a stable intraplate region to a megathrust earthquake. Tectonophysics, 689, 67–78. https://doi.org/10.1016/j.tecto.2016.07.033
Lee, J., & Hong, T. K. (2014). Dynamic lithospheric response to megathrust and precursory seismicity features of megathrust. Physics of the Earth and Planetary Interiors, 234, 35–45. https://doi.org/10.1016/j.pepi.2014.06.012
Likitlersuang, S., Plengsiri, P., Mase, L. Z., & Tanapalungkorn, W. (2020). Influence of spatial variability of ground on seismic response analysis: a case study of Bangkok subsoils. Bulletin of Engineering Geology and the Environment, 79(1), 39–51. https://doi.org/10.1007/s10064-019-01560-9
Mase, L.Z. (2017b). Study of Liquefaction Mechanism in Chiang Rai Province. Ph.D diss, Chulalongkorn University.
Mase, L. Z. (2017). Liquefaction potential analysis along the coastal area of Bengkulu province due to the 2007 Mw 8.6 Bengkulu earthquake. Journal of Engineering and Technological Sciences, 49(6), 721–736. https://doi.org/10.5614/j.eng.technol.sci.2017.49.6.2
Mase, L. Z. (2018). Reliability study of spectral acceleration designs against earthquakes in Bengkulu City, Indonesia. International Journal of Technology, 9(5), 910–924. https://doi.org/10.14716/ijtech.v9i5.621
Mase, L. Z. (2020). Seismic Hazard Vulnerability of Bengkulu City, Indonesia, Based on Deterministic Seismic Hazard Analysis. Geotechnical and Geological Engineering, 38(5), 5433–5455. https://doi.org/10.1007/s10706-020-01375-6
Mase, L. Z., & Likitlersuang, S. (2021). Implementation of Seismic Ground Response Analysis in Estimating Liquefaction Potential in Northern Thailand. Indonesian Journal on Geoscience, 8(3), 371–383. https://doi.org/10.17014/ijog.8.3.371-383
Mase, L. Z., Refrizon, Rosiana, & Anggraini, P. W. (2021). Local Site Investigation and Ground Response Analysis on Downstream Area of Muara Bangkahulu River, Bengkulu City, Indonesia. Indian Geotechnical Journal, 51(5), 952–966. https://doi.org/10.1007/s40098-020-00480-w
Mase, L. Z., Yundrismein, R., Nursalam, M. A., Putra, S. M., Shelina, A., & Nugroho, S. H. (2022). A study of building performance inspection based on a combination of site-specific response analysis and structural analysis (A case study of the Lighthouse View Tower in Bengkulu City, Indonesia). Rudarsko Geolosko Naftni Zbornik, 37(3), 197–209. https://doi.org/10.17794/rgn.2022.3.14
McNamara, D. E., Yeck, W. L., Barnhart, W. D., Schulte-Pelkum, V., Bergman, E., Adhikari, L. B., Dixit, A., Hough, S. E., Benz, H. M., & Earle, P. S. (2017). Source modelling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards. Tectonophysics, 714–715, 21–30. https://doi.org/10.1016/j.tecto.2016.08.004
Misliniyati, R., Mase, L. Z., Syahbana, A. J., & Soebowo, E. (2018). Seismic hazard mitigation for Bengkulu Coastal area based on site class analysis. IOP Conference Series: Earth and Environmental Science, 212(1). https://doi.org/10.1088/1755-1315/212/1/012004
Misliniyati, R., Sahadewa, A., Hendriyawan, & Irsyam, M. (2019). Parametric study of one-dimensional seismic site response analyses based on local soil condition of Jakarta. Journal of Engineering and Technological Sciences, 51(3), 392–410. https://doi.org/10.5614/j.eng.technol.sci.2019.51.3.7
Misliniyati, R. (2022). Pengembangan Peta Bahaya Gempa Kota Jakarta Dengan Memperhitungkan Pengaruh Kota Parameter Dinamik dan Tofografi Batuan Dasar Terhadap Respons Seismik di Permukaan. DR.diss, Institut Teknologi Bandung.
Miyazawa, M., & Santoyo, M. Á. (2021). Tectonic tremors in the Northern Mexican subduction zone were remotely triggered by the 2017 M w8.2 Tehuantepec earthquake. Earth, Planets and Space, 73(1). https://doi.org/10.1186/s40623-020-01331-x
Muhammad Farid, Misliniyati, R., Amri, K., Zalbuin Mase, L., & Supriani, F. (2024). Seismic Response in Muara Bangkahulu Sub-District, Bengkulu City, Using The Concept of Wave Propagation. Jurnal PenSil, 13(3), 314–329. https://doi.org/10.21009/jpensil.v13i3.45746
Nainitania, R., Darmawan, D., Pendidikan, M. J., Universitas, F., Yogyakarta, N., Jurusan, D., Fisika, P., & Yogyakarta, U. N. (2021.). Analisis Zona Genangan Tsunami Akibat Gempa Bumi Megathrust di Selatan Pulau Jawa.
Natawidjaja, D.H., (2007). Structural Architecture and Tectonics of The Sumatra Fault Zone. Report to Newmont Asia Pacific, pp. 1-11.
Peng, Z., Lei, X., Wang, Q.-Y., Wang, D., Mach, P., Yao, D., Kato, A., Obara, K., & Campillo, M. (2024). The Evolution Process between the Earthquake Swarm Beneath the Noto Peninsula, Central Japan and the 2024 M 7.6 Noto Hanto Earthquake Sequence. Earthquake Research Advances, 100332. https://doi.org/10.1016/j.eqrea.2024.100332
Philibosian, B., & Meltzner, A. J. (2020). Segmentation and supercycles: A catalog of earthquake rupture patterns from the Sumatran Sunda Megathrust and other well-studied faults worldwide. In Quaternary Science Reviews (Vol. 241). Elsevier Ltd. https://doi.org/10.1016/j.quascirev.2020.106390
Peraturan Daerah Kota Bengkulu Nomor 4 Tahun 2021 Tentang Rencana Tata Ruang Wilayah Kota Bengkulu Tahun 2021 - 2024. (2021).
Puri, N., Jain, A., Mohanty, P., & Bhattacharya, S. (2018). Earthquake Response Analysis of Sites in State of Haryana using DEEPSOIL Software. Procedia Computer Science, 125, 357–366. https://doi.org/10.1016/j.procs.2017.12.047
Rusydy, I., Idris, Y., Mulkal, Muksin, U., Cummins, P., Akram, M. N., & Syamsidik. (2020). Shallow crustal earthquake models, damage, and loss predictions in Banda Aceh, Indonesia. Geoenvironmental Disasters, 7(1). https://doi.org/10.1186/s40677-020-0145-5
Sari, E. Y., Mase, L. Z., Hardiansyah, H., Misliniyati, R., & Amri, K. (2024). Implementasi Metode Linier Ekuivalen dan Nonlinier Dalam Memprediksi Respons Seismik Area Kampung Melayu, Kota Bengkulu. Jurnal Geosaintek, 10(2), 159–172. https://doi.org/10.12962/j25023659.v10i2.1723
Sugianto, N., & Farid, M. (2017). Spektra: Jurnal Fisika dan Aplikasinya Kondisi Geologi Lokal Kota Bengkulu Berdasarkan Ground Shear Strain (GSS). https://doi.org/10.21009/SPEKTRA
Sugianto, N., Refrizon, Mase, L. Z., & Anggeraini, S. (2021). The updated zonation of seismic vulnerability index and ground shear strain at Bengkulu City, Indonesia. AIP Conference Proceedings, 2320. https://doi.org/10.1063/5.0037597
Takeda, Y., Enescu, B., Miyazawa, M., & An, L. (2024). Dynamic Triggering of Earthquakes in Northeast Japan before and after the 2011 M 9.0 Tohoku-Oki Earthquake. Bulletin of the Seismological Society of America, 114(4), 1884–1901. https://doi.org/10.1785/0120230051
Yukutake, Y., Abe, Y., & Doke, R. (2019). Deep Low-Frequency Earthquakes Beneath the Hakone Volcano, Central Japan, and their Relation to Volcanic Activity. Geophysical Research Letters, 46(20), 11035–11043. https://doi.org/10.1029/2019GL084357
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Zhehan Fahrezi, Rena Misliniyati, Khairul Amri, Lindung Zalbuin Mase, Hardiansyah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.