Validasi Metode Analisis Fosfor pada Sampel Daging dengan Pereduksi Hidrazin Sulfat menggunakan Spektrofotometri Uv-Vis

  • Adelia Nisrina Khanza Prodi Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam , Universitas Negeri Jakarta, Jl. Rawamangun Muka, Rawamangun, Jakarta Timur, DKI Jakarta 13220, Indonesia
  • Yussi Pratiwi Program Studi Kimia, Fakultas Matematikan dan Ilmu Pengetahuan Alam, Universitas Negerti Jakarta, Jakarta, Indonesia
Keywords: hidrazin sulfat, metode analisis fosfor, spektrofotomateri UV-Vis

Abstract

Abstrak

Pakan ternak yang biasanya dikonsumsi untuk menjaga nutrisi ternak mengandung fosfor. Fosfor dalam pakan ternak dapat menyebabkan akumulasi fosfor dalam daging ternak. Oleh karena itu, analisis fosfor secara berkala diperlukan untuk memastikan makanan tersebut aman untuk dikonsumsi. Analisis fosfor diukur dengan menggunakan metode spektrofotometri UV-Vis dengan menentukan kondisi optimum untuk analisis fosfor kemudian dilanjutkan validasi metode analisis yang terdiri dari parameter linearitas, sensitivitas, batas deteksi dan kuantitasi, akurasi dan presisi. Reaksi molibdenum biru menghasilkan senyawa kompleks fosfomolibdat dengan panjang gelombang 689 nm. Validasi metode analisis fosfat tereduksi hidrazin sulfat memiliki linearitas dengan nilai R2 = 0,9984 pada rentang 0 - 0,05 mg L-1 . Absorptivitas molar sebesar 7,9259 x 104 L mol-1 cm-1 . Nilai limit deteksi (LOD) sebesar 5,26 x 10-4 mg L-1 dan nilai limit kuantitasi (LOQ) sebesar 1,59 x 10-3 mg L-1 . Nilai presisi dinyatakan dalam persen simpangan baku relatif %RSD pada daging bebek, ayam dan sapi sebesar 1,33%, 1,34% dan 1,08%. Persen perolehan kembali yang diperoleh untuk setiap sampel daging berkisar antara 90% - 117%. Fosfat yang terkandung dalam daging bebek, ayam dan sapi tidak melebihi baku mutu menurut Persatuan Ahli Gizi Indonesia (PERSAGI).

Kata kunci: hidrazin sulfat, metode analisis fosfor, spektrofotomateri UV-Vis

Abstract

Animal feed which is usually consumed to maintain the nutrition of livestock contains phosphor. The phosphor in animal feed may cause an accumulated phosphor in meat. Therefore, a regular phosphor analysis is needed to make sure the food is safe. Phosphor analysis is measured by using spectrophotometry UV-Vis method by determining the optimum conditions for phosphorus analysis and then continued analysis validation which consists of linearity parameter, sensitivity, limit of detection and quantitation, accuracy, and precision. The reaction of blue molybdenum results in complex phosphomolybdate compound with a wavelength of 689 nm. The method validation of analysis of phosphate reduced hydrazine sulfate have a linearity of the method with R2=0.9984 in the range of 0 - 0.05 mg L-1 . The molar absorptivity of 7.9259 x 104 L mol-1 cm-1 . The value of limit of detection (LOD) of 5.26 x 10-4 mg L-1 and quantitation limit (LOQ) value of 1.59 x 10-3 mg L-1 . The precision values were expressed as percent of the relative standard deviations of %RSD in duck, chicken and cow of 1.33%, 1.34% and 1.08%. The percent recovery is obtained for each sample of meat ranged from 90% - 117%. Phosphate contained in duck, chicken and cow did not exceed the quality standard according to the Indonesian Nutritionist Association (PERSAGI).

Keywords: analysis fosfor method, hidrazin sulfat, spektrofotomateri UV-Vis

References

Altundag, H., Agar, S., Altıntıg, E., Ates, A., & Sivrikaya, S. (2019). Use of ion chromatography method on the determination of some anions in the water collected from Sakarya, Turkey. Journal of Chemical Metrology, 13(1), 14–20. https://doi.org/10.25135/jcm.26.19.03.1221

Chiles, R. M., & Fitzgerald, A. J. (2018). Why is meat so important in Western history and culture? A genealogical critique of biophysical and political-economic explanations. Agriculture and Human Values, 35(1), 1–17. https://doi.org/10.1007/s10460-017-9787-7

Dayrell, R. L. C., Cawthray, G. R., Lambers, H., & Ranathunge, K. (2021). Using activated charcoal to remove substances interfering with the colorimetric assay of inorganic phosphate in plant extracts. Plant and Soil, 476(1-2), 755–764. https://doi.org/10.1007/s11104-021-05195-2

Dell’Aquila, C., Neal, A. L., & Shewry, P. R. (2020). Development of a reproducible method of analysis of iron, zinc and phosphorus in vegetables digests by SEC-ICP-MS. Food Chemistry, 308, 125652. https://doi.org/10.1016/j.foodchem.2019.125652

Donat‐Vargas, C., Guallar‐Castillon, P., Nyström, J., Larsson, S. C., Kippler, M., Vahter, M., Faxén‐Irving, G., Michaelsson, K., Wolk, A., Stenvinkel, P., & Åkesson, A. (2023). Urinary phosphate is associated with cardiovascular disease incidence. Journal of Internal Medicine, 294(3), 358–369. https://doi.org/10.1111/joim.13686

Duvall, E. S., Griffiths, B. M., Clauss, M., & Abraham, A. J. (2023). Allometry of sodium requirements and mineral lick use among herbivorous mammals. Oikos, 2023(9). https://doi.org/10.1111/oik.10058

Ganesh, S., Khan, F., Ahmed, M. K., Velavendan, P., Pandey, N. K., & Kamachi Mudali, U. (2012). Spectrophotometric determination of trace amounts of phosphate in water and soil. Water Science and Technology, 66(12), 2653–2658. https://doi.org/10.2166/wst.2012.468

Hernando, N., Gagnon, K., & Lederer, E. (2021). Phosphate Transport in Epithelial and Nonepithelial Tissue. Physiological Reviews, 101(1), 1–35. https://doi.org/10.1152/physrev.00008.2019

Hou, Y.-C., Zheng, C.-M., Chiu, H.-W., Liu, W.-C., Lu, K.-C., & Lu, C.-L. (2022). Role of Calcimimetics in Treating Bone and Mineral Disorders Related to Chronic Kidney Disease. Pharmaceuticals, 15(8), 952. https://doi.org/10.3390/ph15080952

Jastrzębska, A. (2009). Modifications of spectrophotometric methods for total phosphorus determination in meat samples. Chemical Papers, 63(1). https://doi.org/10.2478/s11696-008-0091-2

Krieg, J., Stalljohann, G., Oster, M., Pfuhl, R., Reckels, B., Preissinger, W., Weber, M., Meyer, A., Feuerstein, D., & Schneider, S. (2023). Stepwise Reduction of Dietary Phosphorus in Diets for Piglets and Fattening Pigs of Different Genetic Origin Housed under Various Station Environments—A Ringtest. Animals, 13(11), 1774–1774. https://doi.org/10.3390/ani13111774

Ma, Q., Li, C., Wang, B., Ma, X., & Jiang, L. (2021). Wavelength selection of terahertz time-domain spectroscopy based on a partial least squares model for quantitative analysis. Applied Optics, 60(19), 5638–5638. https://doi.org/10.1364/ao.427238

Marbà, B. L., Remus, A., & Pomar, C. (2023). 281 Modeling How the Inclusion of Fibrous By-Products to the Feed Improves the Net Protein Contribution of Pork Meat. Journal of Animal Science/Journal of Animal Science ... And ASAS Reference Compendium, 101(Supplement_3), 207–207. https://doi.org/10.1093/jas/skad281.250

Mironov, N., Haque, M., Atfi, A., & Razzaque, M. S. (2022). Phosphate Dysregulation and Metabolic Syndrome. Nutrients, 14(21), 4477. https://doi.org/10.3390/nu14214477

Ngibad, K. (2019). Analisis Kadar Fosfat Dalam Air Sungai Ngelom Kabupaten Sidoarjo Jawa Timur. Jurnal Pijar Mipa, 14(3), 197. https://doi.org/10.29303/jpm.v14i3.1158

Oleneva, E., Khaydukova, M., Ashina, J., Yaroshenko, I., Jahatspanian, I., Legin, A., & Kirsanov, D. (2019). A Simple Procedure to Assess Limit of Detection for Multisensor Systems. Sensors, 19(6), 1359. https://doi.org/10.3390/s19061359

Peacock, M. (2020). Phosphate Metabolism in Health and Disease. Calcified Tissue International, 108(1), 3–15. https://doi.org/10.1007/s00223-020-00686-3

Phouthavong, V., Manakasettharn, S., Viboonratanasri, D., Buajarern, S., Prompinit, P., & Sereenonchai, K. (2021). Colorimetric determination of trace orthophosphate in water by using C18-functionalized silica coated magnetite. Scientific Reports, 11(1), 23073. https://doi.org/10.1038/s41598-021-02516-4

Pokhrel, M. R., Adhikari, S., Subedi, K., Dhungana, S., & Poudel, B. R. (2022). Spectrophotometric determination of phosphate in presence of arsenate. Scientific World, 15(15), 10–17. https://doi.org/10.3126/sw.v15i15.45636

Rohit, N., Patel, Y., Ghatol, P. W., Srinivas, P., & Chakraborthy, G. S. (2023). A Systematic Review on Hyperphosphatemia in Chronic Kidney Disease. International Journal of Pharmaceutical Sciences Review and Research, 79(2). https://doi.org/10.47583/ijpsrr.2023.v79i02.021

Smith, N. W., Fletcher, A. J., Hill, J. P., & McNabb, W. C. (2022). Modeling the Contribution of Meat to Global Nutrient Availability. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.766796

Tang, X., Liu, X., & Hu, L. (2021). Mechanisms of Epidermal Growth Factor Effect on Animal Intestinal Phosphate Absorption: A Review. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.670140

Vaughan, M. C. H., Bowden, W. B., Shanley, J. B., Vermilyea, A., Wemple, B., & Schroth, A. W. (2018). Using in situ UV‐Visible spectrophotometer sensors to quantify riverine phosphorus partitioning and concentration at a high frequency. Limnology and Oceanography: Methods, 16(12), 840–855. https://doi.org/10.1002/lom3.10287

Wieczorek, D., Żyszka-Haberecht, B., Kafka, A., & Lipok, J. (2022). Determination of phosphorus compounds in plant tissues: from colourimetry to advanced instrumental analytical chemistry. Plant Methods, 18(1). https://doi.org/10.1186/s13007-022-00854-6

Zhang, J., Ying, Y., Yi, X., Han, W., Yin, L., Zheng, Y., & Zheng, R. (2023). H2O2 Solution Steaming Combined Method to Cellulose Skeleton for Transparent Wood Infiltrated with Cellulose Acetate. Polymers, 15(7), 1733. https://doi.org/10.3390/polym15071733

Published
2024-07-15
How to Cite
Khanza, A. N., & Pratiwi, Y. (2024). Validasi Metode Analisis Fosfor pada Sampel Daging dengan Pereduksi Hidrazin Sulfat menggunakan Spektrofotometri Uv-Vis . JRSKT - Jurnal Riset Sains Dan Kimia Terapan, 10(1), 107 - 120. https://doi.org/10.21009/JRSKT.101.03