Pengolahan Limbah Cair Peternakan Babi menggunakan Metode Adsorpsi dan Filtrasi
DOI:
https://doi.org/10.21009/JRSKT.102.02Keywords:
limbah ternak, metode adsorpsi, metode filtrasiAbstract
Abstrak
Limbah ternak merupakan sisa buangan dari suatu kegiatan usaha peternakan seperti usaha pemeliharaan ternak, pengolahan produk ternak, rumah potong hewan, dan lainnya. Penelitian ini bertujuan untuk mengetahui tentang Pengolahan limbah cair dengan metode adsorpsi dan filtrasi di peternakan babi Desa Kukuh Kecamatan Marga Kabupaten Tabanan. Design dalam penelitian ini menggunakan the one group pretest-posttest design yaitu melakukan pretest atau pengujian sebelum dilakukan treatment kemudian hasil dari treatment di lakukan pengujian, hasil dari perlakukan tersebut dapat di bandingkan keadaan sebelum dan sesudah diberikan treatment. Berdasarkan hasil penelitian dan pemeriksaan parameter sesuai dengan baku mutu standar Peraturan Menteri Negara Lingkungan Hidup Nomor 11 Tahun 2009 Tentang Baku Mutu Air Limbah Bagi Usaha Dan/Atau Kegiatan Peternakan Sapi Dan Babi. Hasil Kadar Biochemical Oxygen Demand (BOD) pada ketebalan media 50 cm dan 40 cm memenuhi syarat, sedangkan pada ketebalan media 20 cm hasilnya tidak memenuhi syarat. Kadar Chemical Oxygen Demand (COD) dengan ketebalan media 50 cm, 40 cm dan 20 cm mendapatkan hasil tidak memenuhi syarat. Kadar Total Suspended Solid (TSS) pada ketebalan media 50 cm dan 40 cm hasilnya memenuhi syarat sedangkan pada ketebalan media 20 cm hasilnya tidak memenuhi syarat. Pemeriksaan pH mendapat hasil memenuhi syarat, Pemeriksaan Bau mendapat hasil tidak memenuhi syarat, pemeriksaan warna dan suhu mendapatkan hasil memenuhi syarat. Efektifitas pengolahan limbah cair pada peternakan babi mendapatkan hasil pada media pengolahan dari masing-masing ketebalan media yaitu 50 cm, 40 cm dan 20 cm cenderung mengalami penurunan setelah dilakukan pengolahan air limbah cair dengan metode filtrasi dan adsorpsi
Kata kunci: limbah ternak, metode adsorpsi, metode filtrasi
Abstract
Livestock waste is kind of waste produced from the left-over livestock business such as breeding, livestock products, or slaughterhouse etc. This research aimed to know about piggery liquid waste treatment using adsorption and filtration methods in Kukuh village, Marga district, Tabanan regency. The design in this research was the one group pre-test and post test design. The researcher did the pretest before doing the treatment and the result of the treatment would be evaluated in which both results could be compared, the circumstances before and after the treatment were implemented. In accordance with the findings of the research and assessment parameter of quality standard set by Minister Environment Regulation No. 11 in 2009 about standard quality of liquid waste for business or activities in cattle farm and piggery, it was concluded that the result of Biochemical Oxygen Demand (BOD) in media thickness of 50 cm and 40 cm qualified the standard but the result in 20 cm media thickness didn't fullfill the standard. In regard to Chemical Oxygen Demand (COD) in media thickness of 50 cm, 40 cm and 20 cm all didn't qualify for the set standard. Meanwhile, Total Suspended Solid (TSS) in media thickness of 50 cm and 40 cm qualified the standard but the result in 20 cm media thickness didn't fullfill the standard. In addition, PH assessment qualify for the standard. Odor assessment result didn't fullfill the standard. Whereas color and temperature assessments qualified for the standard. In conclusion, the effectiveness of piggery liquid waste treatment resulted on media processing in each thickness of 50 cm, 40 cm, 20 cm tended to decrease after liquid waste treatment adsorption and filtration methods were implemented.
Keywords: adsorption methods, filtration methods, livestock waste
References
Alba-Reyes, Y., Barrera, E. L., Brito-Ibarra, Y., & Hermida-García, F. O. (2023). Life cycle environmental impacts of using food waste liquid fodder as an alternative for pig feeding in a conventional Cuban farm. Science of the Total Environment, 858, 159915. https://doi.org/10.1016/j.scitotenv.2022.159915
Bai, H., Qian, X., Fan, J., Shi, Y., Duo, Y., & Guo, C. (2021). Probing the Effective Diffusion Coefficient and Filtration Performance of Micro/Nanofibrous Composite Layered Filters. Industrial & Engineering Chemistry Research, 60(19), 7301–7310. https://doi.org/10.1021/acs.iecr.0c06344
Balsamo, M., & Montagnaro, F. (2019). Liquid–solid adsorption processes interpreted by fractal-like kinetic models. Environmental Chemistry Letters, 17(2), 1067–1075. https://doi.org/10.1007/s10311-018-00830-4
Batubara, A. S., M. Adress Hasan, H., Abel, Mohammed. A., Masoud, M. S., Mostafa, A. R., Gamal, M., & Elsayed, M. A. (2023). Usage of natural wastes from animal and plant origins as adsorbents for the removal of some toxic industrial dyes and heavy metals in aqueous media. Journal of Water Process Engineering, 55, 104204–104204. https://doi.org/10.1016/j.jwpe.2023.104204
Checcucci, A., Buscaroli, E., Modesto, M., Luise, D., Blasioli, S., Scarafile, D., Maura Di Vito, Bugli, F., Paolo Trevisi, Ilaria Braschi, & Mattarelli, P. (2024). The swine waste resistome: Spreading and transfer of antibiotic resistance genes in Escherichia coli strains and the associated microbial communities. Ecotoxicology and Environmental Safety, 283, 116774–116774. https://doi.org/10.1016/j.ecoenv.2024.116774
Cuomo, M., König, R., Zanardini, E., Guardo, A. D., Bianchi, G., Ortona, A., & Principi, P. (2023). Using zeolite filters to reduce activated carbon use in micropollutant removal from wastewater. Journal of Water Process Engineering, 56, 104298–104298. https://doi.org/10.1016/j.jwpe.2023.104298
Gu, B., Kondic, L., & Cummings, L. J. (2022). Network-based membrane filters: Influence of network and pore size variability on filtration performance. Journal of Membrane Science, 657, 120668. https://doi.org/10.1016/j.memsci.2022.120668
Gueddari, A., García-Alaminos, Á., Alonso-Moreno, C., Canales-Vázquez, J., & García-Yuste, S. (2024). Sustainable farms from a biogenic CO2 source: The CO2 management pig slurry strategy. Chemical Engineering Journal, 492, 152231–152231. https://doi.org/10.1016/j.cej.2024.152231
Guo, X., & Wang, J. (2024). A novel monolayer adsorption kinetic model based on adsorbates “infect” adsorbents inspired by epidemiological model. Water Research, 253, 121313–121313. https://doi.org/10.1016/j.watres.2024.121313
Kim, S.-R., Lee, J., Lee, M. G., Sung, H. G., & Hwang, S.-G. (2024). Analysis of microbial communities in solid and liquid pig manure during the fertilization process. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-023-50649-5
Liu, B., Zhou, H., Li, L., Ai, J., He, H., Yu, J., Li, P., & Zhang, W. (2023). Environmental impact and optimization suggestions of pig manure and wastewater treatment systems from a life cycle perspective. Science of the Total Environment, 905, 167262–167262. https://doi.org/10.1016/j.scitotenv.2023.167262
Printsypar, G., Bruna, M., & Griffiths, I. M. (2019). The influence of porous-medium microstructure on filtration. Journal of Fluid Mechanics, 861, 484–516. https://doi.org/10.1017/jfm.2018.875
Rathi, B. S., & Kumar, P. S. (2021). Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environmental Pollution, 280, 116995. https://doi.org/10.1016/j.envpol.2021.116995
Ruiz-Colmenero, M., Costantini, M., Bàllega, A., Zoli, M., Andón, M., Cerrillo, M., Fàbrega, E., Bonmatí, A., Guarino, M., & Bacenetti, J. (2024). Air treatment technologies in pig farms. Life cycle assessment of dry and wet scrubbers in Northern Italy and Northeastern Spain. Science of the Total Environment, 922, 171197. https://doi.org/10.1016/j.scitotenv.2024.171197
Sang, D., Cimetiere, N., Giraudet, S., Tan, R., Wolbert, D., & Cloirec, P. L. (2022). Adsorption-desorption of organic micropollutants by powdered activated carbon and coagulant in drinking water treatment. Journal of Water Process Engineering, 49, 103190–103190. https://doi.org/10.1016/j.jwpe.2022.103190
Tee , G. T., Gok, X. Y., & Yong, W. F. (2022). Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review. Environmental Research, 212. https://doi.org/10.1016/j.envres.2022.113248
Trouli, K., Dokianakis, S., Vasilaki, E., & Katsarakis, N. (2023). Treatment of Agricultural Waste Using a Combination of Anaerobic, Aerobic, and Adsorption Processes. Sustainability, 15(3), 1892. https://doi.org/10.3390/su15031892
Yang, F., Han, B., Gu, Y., & Zhang, K. (2020). Swine liquid manure: a hotspot of mobile genetic elements and antibiotic resistance genes. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-72149-6
Zeng, W., Lu, R., Wang, D., He, L., & Wu, Z. (2022). An innovative method for the fractionation and pretreatment of pig farm biogas slurry by ultrafiltration. Journal of Water Process Engineering, 48, 102859–102859. https://doi.org/10.1016/j.jwpe.2022.102859
Zhang, J., Li, J., Wu, Z., Liu, J., You, X., Wang, H., Shen, Z., & Wang, M. (2024). Effects of mimicking manure removal strategies on ammonia and greenhouse gas emissions in sow pen scale models. Biosystems Engineering, 242, 169–178. https://doi.org/10.1016/j.biosystemseng.2024.04.016
Zhao, C., Zhang, J., Zhang, W., Yang, Y., Guo, D., Zhang, H., & Liu, L. (2024). Reveal the main factors and adsorption behavior influencing the adsorption of pollutants on natural mineral adsorbents: Based on machine learning modeling and DFT calculation. Separation and Purification Technology, 331, 125706–125706. https://doi.org/10.1016/j.seppur.2023.125706