Sintesis dan Karakterisasi NiFe₂O₄ Sebagai Adsorben Amonia dalam Air Akuarium Budidaya Ikan Mas (Cyprinus carpio)

Authors

  • Fadhil Hisyam Murtadha Prodi Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam , Universitas Negeri Jakarta, Jl. Rawamangun Muka, Rawamangun, Jakarta Timur, DKI Jakarta 13220, Indonesia
  • Erdawati Erdawati Program Studi Kimia, Fakultas Matematikan dan Ilmu Pengetahuan Alam, Universitas Negerti Jakarta, Jakarta, Indonesia
  • Jan Setiawan Pusat Riset Material Maju, Badan Riset dan Inovasi Nasional, Gedung 224, Jl. Kw. Puspiptek, Kota Tangerang Selatan, Jawa Barat 15314, Indonesia

DOI:

https://doi.org/10.21009/JRSKT.102.01

Keywords:

adsorben magnetik, amonia, nikel ferit (NiFe2O4)

Abstract

Abstrak

Nikel ferit (NiFe2O4) termasuk adsorben magnetik yang baik untuk polutan organik dan anorganik. Penelitian ini bertujuan untuk mengetahui kemampuan nikel ferit dalam mengadsorpsi amonia dalam air akuarium budidaya ikan mas (Cyprinus carpio). Nikel ferit disintesis dengan menggunakan metode hidrotermal. Pola difraksi XRD dan spektrum FTIR mengonfirmasi terbentuknya senyawa NiFe2O4. Hasil karakterisasi SAA menunjukkan NiFe2O4 memiliki tipe isoterm adsorpsi tipe IV (mesopori), dengan luas permukaan Brunauer Emmet Teller (BET) sebesar 18,6431 m²/g. Hasil karakterisasi SEM menunjukkan bentuk morfologi dari NiFe2O4 adalah bulat dan homogen. Data EDX menunjukkan bahwa unsur Ni, Fe dan O sebagai komponen penyusun utama bagi NiFe2O4. Nikel ferit hasil sintesis digunakan sebagai adsorben NH3 dalam air akuarium dan mampu mengadsorpsi NH3 sebesar 0,26 mg/L dengan efisiensi 96% dalam waktu 3 jam. Model kinetika yang sesuai untuk adsorpsi NH3 dalam air akuarium terhadap NiFe2O4 adalah model kinetika orde kedua semu dengan nilai koefisien determinasi (R2 = 0,9835), yang menunjukkan bahwa proses adsorpsi antara NH3 dalam air akuarium dengan NiFe2O4 adalah adsorpsi secara kimia

Kata-kata kunci: adsorben magnetik, amonia, nikel ferit (NiFe2O4)

Abstract

Nickel ferrite (NiFe2O4) is one of the good magnetic adsorbents for organic and inorganic pollutants. The aim of this study is to find out the ability of nickel ferrite to adsorb ammonia in aquarium water for goldfish (Cyprinus carpio) cultivation. Nickel ferrite was synthesized using hydrothermal method. XRD diffraction pattern and FTIR spectra confirmed the formation of NiFe2O4 compounds. The results of SAA characterization showed that NiFe2O4 has adsorption isotherm type-IV (mesoporous), with the surface area of ​​Brunauer Emmet Teller (BET) 18.6431 m²/g. The results of SEM characterization show that the morfology form of NiFe2O4 are spherical and homogeneous. EDX data showed that Ni, Fe and O as the main component for NiFe2O4. The synthesized nickel ferrite was then used as NH3 adsorbent in aquarium water and able to adsorb NH3 equal to 0.26 mg/L with efficiency 96% in 3 hours. Kinetics model suitable for the adsorption NH3 in aquarium water toward NiFe2O4 is a pseudo-second-order with the value of determination coefficient is (R2 = 0.9835), which shows that the adsorption process between NH3 in aquarium water and NiFe2O4 is chemisorption.

Keywords:  Amonia, Magnetic adsorbent, Nickel ferrite (NiFe2O4)

References

Boutwell, D., Pierre-Jacques, D., Cochran, O., Dyke, J., Salazar, D., Tyler, C., & Kaledin, M. (2022). Intramolecular Proton Transfer in the Hydrogen Oxalate Anion and the Cooperativity Effects of the Low-Frequency Vibrations: A Driven Molecular Dynamics Study. The Journal of Physical Chemistry A, 126(4), 583–592. https://doi.org/10.1021/acs.jpca.1c09686
Cantoni, B., Ianes, J., Bertolo, B., Ziccardi, S., Maffini, F., & Antonelli, M. (2024). Adsorption on activated carbon combined with ozonation for the removal of contaminants of emerging concern in drinking water. Journal of Environmental Management, 350, 119537–119537. https://doi.org/10.1016/j.jenvman.2023.119537
Edwards, T. M., Puglis, H. J., Kent, D. B., Durán , J. L., Bradshaw, L. M., & Farag, A. M. (2024). Ammonia and aquatic ecosystems - A review of global sources, biogeochemical cycling, and effects on fish. Science of the Total Environment, 907. https://doi.org/10.1016/j.scitotenv.2023.167911
Farrag, M. M. S., Abdelmgeed, A. M., Moustafa, M. A., & Osman, A. G. M. (2024). Improving the water quality of fish aquaculture effluents after treatment by microalgae. Desalination and Water Treatment, 317, 100155–100155. https://doi.org/10.1016/j.dwt.2024.100155
Godoy-Olmos, S., Jauralde, I., Monge-Ortiz, R., Milián-Sorribes, M. C., Jover-Cerdá, M., Tomás-Vidal, A., & Martínez-Llorens, S. (2022). Influence of diet and feeding strategy on the performance of nitrifying trickling filter, oxygen consumption and ammonia excretion of gilthead sea bream (Sparus aurata) raised in recirculating aquaculture systems. Aquaculture International, 30(2), 581–606. https://doi.org/10.1007/s10499-021-00821-3
Grecu, I., Enache, A.-C., Pascariu, P., Bele, A., Samoila, P., Cojocaru, C., & Harabagiu, V. (2024). Modified spinel ferrite–based composite membranes with highly proficient photocatalytic activity. Surfaces and Interfaces, 51, 104536–104536. https://doi.org/10.1016/j.surfin.2024.104536
Guo, M., Xu, Z., Zhang, H., Mei, J., & Xie, J. (2023). The Effects of Acute Exposure to Ammonia on Oxidative Stress, Hematological Parameters, Flesh Quality, and Gill Morphological Changes of the Large Yellow Croaker (Larimichthys crocea). Animals, 13(15), 2534–2534. https://doi.org/10.3390/ani13152534
John, E. M., Krishnapriya, K., & Sankar, T. V. (2020). Treatment of ammonia and nitrite in aquaculture wastewater by an assembled bacterial consortium. Aquaculture, 526, 735390. https://doi.org/10.1016/j.aquaculture.2020.735390
Kämmer, N., Reimann, T., & Braunbeck, T. (2024). Neurotoxic pesticides change respiratory parameters in early gill-breathing, but not in skin-breathing life-stages of zebrafish (Danio rerio). Aquatic Toxicology, 267, 106831–106831. https://doi.org/10.1016/j.aquatox.2024.106831
Kumar, N., Ansari, M. R., Khaladkar, S., Maurya, O., Peta, K. R., Kalekar, A., Singha, M. K., & Kumar, J. (2023). Nife2o4 Nanoparticles as Highly Efficient Catalyst for Oxygen Reduction Reaction and Energy Storage in Supercapacitor. Materials Chemistry and Physics, 316. https://doi.org/10.2139/ssrn.4600180
Ma, Y., Liu, Y., Sun, J., Min, P., Liu, W., Li, L., Yi, P., Guo, R., & Chen, J. (2024). Ecological risks of high-ammonia environment with inhibited growth of Daphnia magna: Disturbed energy metabolism and oxidative stress. The Science of the Total Environment, 948, 174959–174959. https://doi.org/10.1016/j.scitotenv.2024.174959
Nagaraju, T. V., Chi, S. M., Chaudhary, B., Prasad, Ch. D., & Gobinath, R. (2023). Prediction of ammonia contaminants in the aquaculture ponds using soft computing coupled with wavelet analysis. Environmental Pollution, 331, 121924–121924. https://doi.org/10.1016/j.envpol.2023.121924
Rafie, S. F., Abu-Zahra, N., & Sabetvand, R. (2024). Enhancing Zn (II) Recovery Efficiency: Bi-Divalent Nickel-Cobalt Ferrite Spinel NiXCo1-xFe2O4 as a Game-Changing Adsorbent—an Experimental and Computational Study. Chemosphere, 362, 142702–142702. https://doi.org/10.1016/j.chemosphere.2024.142702
Sahami, M., Jamaati, J., & Bahiraei, M. (2021). A computational model for predicting filtration performance of 3D-magnetic filters under different channel geometries, particle sizes and flow conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 611, 125844. https://doi.org/10.1016/j.colsurfa.2020.125844
Singh, R., Jasrotia, R., Sharma, D., Singh, J., Mittal, S., & Singh, H. (2024). Recyclable magnetic nickel ferrite–carboxymethyl cellulose–sodium alginate bio-composite for efficient removal of nickel ion from water. Journal of Dispersion Science and Technology, 1–12. https://doi.org/10.1080/01932691.2024.2320302
Thamer, A. A., Mustafa, A., Bashar, H. Q., Van, B., Le, P.-C., Jakab, M., Rashed, T. R., Kułacz, K., Hathal, MustafaM., Somogyi, V., & Nguyen, D. D. (2024). Activated carbon and their nanocomposites derived from vegetable and fruit residues for water treatment. Journal of Environmental Management, 359, 121058–121058. https://doi.org/10.1016/j.jenvman.2024.121058
Wang, C., Hu, Z., Yang, L., Zhang, C., Zhang, L., Ji, S., Xu, L., Li, J., Hu, Y., Wu, D., Chu, J., & Sugioka, K. (2021). Magnetically driven rotary microfilter fabricated by two-photon polymerization for multimode filtering of particles. Optics Letters, 46(12), 2968–2968. https://doi.org/10.1364/ol.428751
Watanabe, T., Kawahara, D., Kawamura, T., Inoue, R., Yamaguchi, A., & Nakao, K. (2024). Sialolithiasis of minor salivary glands in multiple areas of the lips: Scanning electron microscopy and energy dispersive X-ray spectroscopy analysis. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology. https://doi.org/10.1016/j.ajoms.2024.07.002
Xian, G., Long, Z., Qin, B., Liu, J., Peng, W., Jing, B., Zhang, G., Li, Q., & Li, S. (2024). Magnetic nickel ferrite for efficient persulfate activation to remove aqueous refractory organics: Synthesis, advantages, mechanism, and environmental implications. Journal of Environmental Chemical Engineering, 12(2), 111934–111934. https://doi.org/10.1016/j.jece.2024.111934
Zhang, B., Shen, J., Xiong, J., Shen, Y., Zhang, B., & Shi, W. (2023). Influence of solution and operating conditions on the treatment of aquaculture wastewater using direct contact membrane distillation: Ammonia rejection and membrane fouling. Chemical Engineering Journal, 478, 147326–147326. https://doi.org/10.1016/j.cej.2023.147326

Downloads

Published

2024-08-13

How to Cite

Murtadha, F. H., Erdawati, E., & Setiawan, J. (2024). Sintesis dan Karakterisasi NiFe₂O₄ Sebagai Adsorben Amonia dalam Air Akuarium Budidaya Ikan Mas (Cyprinus carpio). JRSKT - Jurnal Riset Sains Dan Kimia Terapan, 10(2), 139–148. https://doi.org/10.21009/JRSKT.102.01