Analisis Kualitas Air Permukaan di Kabupaten Karangasem Berdasarkan Parameter Fisika, Kimia dan Biologi
DOI:
https://doi.org/10.21009/JRSKT.102.03Keywords:
air permukaan, kualitas air, sungaiAbstract
Abstrak
Sungai adalah salah satu bentuk dari suatu ekosistem perairan terbuka yang mengalir dari hulu ke hilir yang memiliki arti penting bagi kehidupan masyarakat serta pemanfaatan yang luas. Informasi mengenai kualitas air sungai sangat penting guna memberikan gambaran mengenai pengaruh pemanfaatan air sungai tersebut oleh manusia. Penelitian ini merupakan penelitian deskriptif tentang kualitas air sungai di Kabupaten Karangasem berdasarkan parameter fisika, kimia dan biologis dari 4 sungai dari total 54 sungai di wilayah Kabupaten Karangasem. Sungai yang diteliti yaitu Tukad Nyuling, Tukad Jangga, Tukad Pati dan Tukad Kerkuk dibandingkan dengan baku mutu Pemerintah yang diatur dalam Peraturan Gubernur No 16 Tahun 2016. tentang Baku Mutu Lingkungan Hidup dan Kriteria Baku Kerusakan Lingkungan Hidup melalui metode Indeks Pencemaran. Hasilnya, Sungai Nyuling memiliki indeks pencemaran 1.23 di hulu, 1.59 di tengah dan 1.31 di hilir. Sungai Jangga memiliki indeks pencemaran 1.43 di hulu, 1.67 di tengah dan 1.88 di hilir. Sungai Pati memiliki indeks pencemaran 1.98 di hulu, 1.29 di tengah dan 3.33 di hilir. Sedangkan, Sungai Kerkuk memiliki nilai indeks pencemaran 1.39 di hulu, 1.40 di tengah dan 3.29 di hilir. Semua titik dari keempat sungai tersebut termasuk dalam kategori cemar ringan.
Kata kunci: air permukaan, kualitas air, sungai
Abstract
A river is one kind of an open water ecosystem that flows from upstream to downstream which has an important meaning for people's lives and for its wide use. The information about river water quality is very important in order to provide an overview of the effects of river water used by human. This research is a descriptive study of river water quality in Karangasem Regency based on the physical, chemical and biological parameters of 4 rivers from a total of 54 rivers in the Karangasem Regency area. The rivers studied were Tukad Nyuling, Tukad Jangga, Tukad Pati and Tukad Kerkuk compared to the Government quality standards stipulated in Governor Regulation No. 16/2016 on Environmental Quality Standards and Environmental Damage Standard Criteria through the Pollution Index method. The result shows that the Nyuling River has a pollution index of 1.23 in the upstream, 1.59 in the middle and 1.31 in the downstream. Jangga River has a pollution index of 1.43 in the upstream, 1.67 in the middle and 1.88 in the downstream.Pati River has a pollution index of 1.98 in the upstream, 1.29 in the middle and 3.33 in the downstream. While the Kerkuk River has a pollution index of 1.39 in the upstream, 1.40 in the middle and 3.29 in the downstream. The river points of that four rivers are categorized as light pollutants
Keywords: river, surface water, water quality
References
Cheema, M. A., Hanif, M., Albalawi, O., Mahmoud, E. E., & Nabi, M. (2024). Evaluating water-related health risks in East and Central Asian Islamic Nations using predictive models (2020–2030). Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-67775-3
Huang, H., Feng, R., Zhu, J., & Li, P. (2019). Prediction of pH Value by Multi-Classification in the Weizhou Island Area. Sensors, 19(18), 3875–3875. https://doi.org/10.3390/s19183875
Jaeger, K. L., Hafen, K. C., Dunham, J. B., Fritz, K. M., Kampf, S. K., Barnhart, T. B., Kaiser, K. E., Sando, R., Johnson, S. L., McShane, R. R., & Dunn, S. B. (2021). Beyond Streamflow: Call for a National Data Repository of Streamflow Presence for Streams and Rivers in the United States. Water, 13(12), 1627–1627. https://doi.org/10.3390/w13121627
Karadeniz, S., Ustaoğlu, F., Aydın, H., & Yüksel, B. (2024). Toxicological risk assessment using spring water quality indices in plateaus of Giresun Province/Türkiye: a holistic hydrogeochemical data analysis. Environmental Geochemistry and Health, 46(8). https://doi.org/10.1007/s10653-024-02054-8
Klein, I., Uereyen, S., Sogno, P., Twele, A., Hirner, A., & Kuenzer, C. (2024). Global WaterPack - The development of global surface water over the past 20 years at daily temporal resolution. Scientific Data, 11(1). https://doi.org/10.1038/s41597-024-03328-7
Kleinhappel, T. K., Burman, O. H. P., John, E. A., Wilkinson, A., & Pike, T. W. (2019). The impact of water pH on association preferences in fish. Ethology, 125(4), 195–202. https://doi.org/10.1111/eth.12843
Leach, J. A., Kelleher, C., Kurylyk, B. L., Moore, R. D., & Neilson, B. T. (2023). A primer on stream temperature processes. WIREs Water, 10(4). https://doi.org/10.1002/wat2.1643
Nunkhaw, M., & Miyamoto, H. (2024). An Image Analysis of River-Floating Waste Materials by Using Deep Learning Techniques. Water, 16(10), 1373–1373. https://doi.org/10.3390/w16101373
Pedrotti, M. L., Petit, S., Eyheraguibel, B., Kerros, M. E., Elineau, A., Ghiglione, J. F., Loret, J. F., Rostan, A., & Gorsky, G. (2021). Pollution by anthropogenic microfibers in North-West Mediterranean Sea and efficiency of microfiber removal by a wastewater treatment plant. Science of the Total Environment, 758, 144195. https://doi.org/10.1016/j.scitotenv.2020.144195
Pellegrin, L., Nitz, L. F., Maltez, L. C., Copatti, C. E., & Luciano, L. (2020). Alkaline water improves the growth and antioxidant responses of pacu juveniles (Piaractus mesopotamicus). Aquaculture, 519, 734713–734713. https://doi.org/10.1016/j.aquaculture.2019.734713
Qian, J., Hu, T., Xiong, H., Cao, X., Liu, F., Gosnell, K. J., Xie, M., Chen, R., & Tan, Q.-G. (2024). Turbid Waters and Clearer Standards: Refining Water Quality Criteria for Coastal Environments by Encompassing Metal Bioavailability from Suspended Particles. Environmental Science & Technology, 58(12), 5244–5254. https://doi.org/10.1021/acs.est.3c09599
Ren, Y., Shi, W., Chen, J., & Li, J. (2024). Water quality drives the reconfiguration of riverine planktonic microbial food webs. Environmental Research, 249, 118379–118379. https://doi.org/10.1016/j.envres.2024.118379
Ruman, M., & Dąbrowska, D. (2024). Evaluation of Water Quality from the Zimny Sztok Spring (Southern Poland)—Preliminary Results. Sustainability, 16(12), 4962–4962. https://doi.org/10.3390/su16124962
Sanchez, R., Groc, M., Vuillemin, R., Pujo-Pay, M., & Raimbault, V. (2023). Development of a Frugal, In Situ Sensor Implementing a Ratiometric Method for Continuous Monitoring of Turbidity in Natural Waters. Sensors, 23(4), 1897–1897. https://doi.org/10.3390/s23041897
Shama, A. T., Terefa, D. R., Geta, E. T., Cheme, M. C., Biru, B., Feyisa, J. W., Lema, M., Desisa, A. E., Feyisa, B. R., & Gebre, D. S. (2023). Latrine utilization and associated factors among districts implementing and not-implementing community-led total sanitation and hygiene in East Wollega, Western Ethiopia: A comparative cross-sectional study. PLOS ONE, 18(7), e0288444. https://doi.org/10.1371/journal.pone.0288444
Talang, N., Polruang, S., & Sirivithayapakorn, S. (2024). Influencing Factors of Microplastic Generation and Microplastic Contamination in Urban Freshwater. Heliyon, e30021–e30021. https://doi.org/10.1016/j.heliyon.2024.e30021
Tirumala, R. D., & Tiwari, P. (2022). Household expenditure and accessibility of water in urban India. Environment and Planning B: Urban Analytics and City Science, 49(8), 2072–2090. https://doi.org/10.1177/23998083221080178
Wang, Y., Zhang, X., Chen, J., Cheng, Z., & Wang, D. (2019). Camera sensor-based contamination detection for water environment monitoring. Environmental Science and Pollution Research, 26(3), 2722–2733. https://doi.org/10.1007/s11356-018-3645-z
Yuan, F., Huang, Y., Chen, X., & Cheng, E. (2018). A Biological Sensor System Using Computer Vision for Water Quality Monitoring. IEEE Access, 6, 61535–61546. https://doi.org/10.1109/ACCESS.2018.2876336