Studi Sintesis dan Karakterisasi Komposit Upr/Core-Shel Fe₃O₄ - SiO₂ Berbahan Dasar Sekam Padi sebagai Material Penyerap Gelombang Mikro
DOI:
https://doi.org/10.21009/JRSKT.102.04Keywords:
Fe3O4, silika, UPR/coreshellAbstract
Abstrak
Penelitian ini bertujuan untuk mensintesis komposit UPR/core-shell berbahan dasar sekam padi sebagai penyerap gelombang mikro. Pada penelitian ini material yang digunakan adalah silika, dan magnetit. Material silika dihasilkan dari sekam padi dengan menggunakan metode sol-gel, sedangkan Fe3O4 dihasilkan dari proses elektrolisis. Kedua material ini kemudian digabungkan menjadi satu membentuk sebuah core-shell dimana magnetit (Fe3O4) sebagai core (bagian inti) dan silika (SiO2) sebagai shell (bagian luar). Selanjutnya dilakukan pembuatan komposit dengan core-shell Fe3O4 - SiO2sebagai filler dan sebagai matriks UPR dengan komposisi tertentu. Komposit di buat dengan beberapa komposisi kemudian di lakukan pengujian serapan gelombang mikro menggunakan VNA (Vektor Network Analyzer) pada frekuensi 8 GHz – 12GHz. Hasil pengujian VNA menunjukkan bahwa material UPR/coreshell ini mampu menyerap gelombang mikro terbaik, dengan komposisi 80%:20% dan serapan tertinggi pada frekuensi 11 GHz dengan serapan sebesar -19. 009 dB.
Kata kunci: Fe3O4, silika, UPR/coreshell
Abstract
This research is intended to synthesize UPR/core-shell composites based on rice husk as a microwave absorber. In this study the materials used are silica, and magnetite. Silica material is produced from rice husk using sol-gel method, while Fe3O4 is produced from electrolysis process. These two materials are then combined into one forming a shell-core where the magnetite (Fe3O4) is the core (core part) and the silica (SiO2) as the shell (the outer). The composite was then made with Fe3O4-SiO2 composite core as the filler and as a UPR matrix with certain composition. Composites are made with some compositions then do the microwave absorption try using VNA (Vector Network Analyzer) at the frequency of 8 GHz - 12 GHz. VNA test results show that UPR/core-shell material is able to absorb the best microwave, with the composition of 80%: 20% and absorption at 11 GHz frequency with absorption of -19. 009 dB.
Keywords: Fe3O4, Silica, UPR/core-shell
References
Albert, A. A., Parthasarathy, V., & Kumar, P. S. (2023). Review on recent progress in epoxy‐based composite materials for Electromagnetic Interference(EMI) shielding applications. Polymer Composites, 45(3), 1956–1984. https://doi.org/10.1002/pc.27928
Asakuma, Y., Maeda, T., Takai, T., Hyde, A., Phan, C., Ito, S., & Taue, S. (2022). Microwaves reduce water refractive index. Scientific Reports, 12(1), 11562. https://doi.org/10.1038/s41598-022-15853-9
Chu, X., Lin, S., Li, H., Xu, J., Li, Z., Shu, L., Pang, M., Zhang, H., & Liu, D. (2024). Heterointerface regulation of core-shell FeSiAl magnetic powders by in situ oxidation as high-efficiency absorbers. Ceramics International. https://doi.org/10.1016/j.ceramint.2024.01.386
Cios, A., Ciepielak, M., Stankiewicz, W., & Szymański, Ł. (2021). The Influence of the Extremely Low Frequency Electromagnetic Field on Clear Cell Renal Carcinoma. International Journal of Molecular Sciences, 22(3), 1342–1342. https://doi.org/10.3390/ijms22031342
Hu, Q., He, Y., Wang, F., Wu, J., Ci, Z., Chen, L., Xu, R., Yang, M., Lin, J., Han, L., & Zhang, D. (2021). Microwave technology: a novel approach to the transformation of natural metabolites. Chinese Medicine, 16(1). https://doi.org/10.1186/s13020-021-00500-8
Martín‐González, S., & Portela‐Camino, J. A. (2024). New technologies for eye care practitioners. Acta Ophthalmologica, 102(S279). https://doi.org/10.1111/aos.16355
Musa, A., Hakim, M. L., Alam, T., Islam, M. T., Alamri, S., Alshammari, A. S., & Soliman, M. S. (2024). Permeability negative split square resonator for solid materials dielectric constant and aqueous solution pH sensing applications. Sensors and Actuators a Physical, 369, 115107–115107. https://doi.org/10.1016/j.sna.2024.115107
Neha, N., Sharma, P., Yadav, P., Rana, D. K., Pal, P. S., Kumar, H., & Kumar, S. (2024). Synthesis of core-shell NiO/BFO nanocomposites for microwave absorbing applications. Ceramics International, 50(7), 11697–11706. https://doi.org/10.1016/j.ceramint.2024.01.074
Neira, K. R., Cárdenas-Ramírez, J. P., Rojas-Herrera, C. J., Haurie, L., Lacasta, A. M., Ramo, J. T., & Sánchez-Ostiz, A. (2024). Assessment of Elaboration and Performance of Rice Husk-Based Thermal Insulation Material for Building Applications. Buildings, 14(6), 1720–1720. https://doi.org/10.3390/buildings14061720
Saeed, M., Haq, R. S. U., Ahmed, S., Siddiqui, F., & Yi, J. (2024). Recent advances in carbon nanotubes, graphene and carbon fibers-based microwave absorbers. Journal of Alloys and Compounds, 970, 172625. https://doi.org/10.1016/j.jallcom.2023.172625
Sharma, S., Parne, S. R., Srihari, S., & Gandi, S. (2024). Progress in microwave absorbing materials: A critical review. Advances in Colloid and Interface Science, 327, 103143–103143. https://doi.org/10.1016/j.cis.2024.103143
Silva, D. B., Pachla, E. C., Bolina, F. L., Graeff, Â. G., Lorenzi, L. S., & Pinto, C. (2024). Mechanical and chemical properties of cementitious composites with rice husk after natural polymer degradation at high temperatures. Journal of Building Engineering, 108716–108716. https://doi.org/10.1016/j.jobe.2024.108716
Susilawati, N., Lubis, H., Sembiring, T., Yanti, J., Sabar, S., Pardede, S. N., Napitupulu, A. F., & Hasanah, M. (2024). Fe3O4/SiO2 composite derived from rice husk ash to enhance methylene blue removal efficiency in wastewater treatment. Case Studies in Chemical and Environmental Engineering, 100762–100762. https://doi.org/10.1016/j.cscee.2024.100762
Wan, D., Tian, C., Cai, Q., & Zhang, X. (2024). Investigating the Characteristics and Thermal Performance of Plaster Composites Enhanced with Paddy Husk for Sustainable Residential Construction. Case Studies in Thermal Engineering, 104638–104638. https://doi.org/10.1016/j.csite.2024.104638
Wang, N., Nan, K., Zheng, H., Xue, Q., Wang, W., & Wang, Y. (2024). Two-phase magnetic nanospheres with magnetic coupling effect encapsulated in porous carbon to achieve lightweight and efficient microwave absorbers. Journal of Colloid and Interface Science, 671, 56–66. https://doi.org/10.1016/j.jcis.2024.05.158
Xu, Z., Kou, S., Dong, B.-X., Zhong, X., Yang, H., Liu, L., Guo, R., Shu, S.-L., Qiu, F., & Zhang, L.-C. (2024). Preparation, reaction mechanism and microwave-absorbing application of functional transition metal carbide/nitride ceramic materials. Journal of Materials Research and Technology, 31, 2593–2617. https://doi.org/10.1016/j.jmrt.2024.07.016
Zidanes, U. L., Maria, C., Lorenço, M. S., Araujo, S., Dias, M. C., Setter, C., Braz, R. L., & Mori, F. A. (2024). Utilization of rice production residues as a reinforcing agent in bioadhesives based on polyphenols extracted from the bark of trees from the Brazilian Cerrado biome. International Journal of Biological Macromolecules, 254, 127813–127813. https://doi.org/10.1016/j.ijbiomac.2023.127813