Sintesis dan Karakterisasi ZVI dari FeCl₂ dengan Polifenol dari Kulit Pisang Kepok (Musa paradisiaca normalis)

Authors

  • Sahid Hidayat Prodi Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam , Universitas Negeri Jakarta, Jl. Rawamangun Muka, Rawamangun, Jakarta Timur, DKI Jakarta 13220, Indonesia
  • Setia Budi Program Studi Kimia, Fakultas Matematikan dan Ilmu Pengetahuan Alam, Universitas Negerti Jakarta, Jakarta, Indonesia
  • Devy Nur Annisa Program Studi Kimia, FMIPA, Universitas Lampung, Gedong Meneng, Bandar Lampung, Lampung 35141, Indonesia

DOI:

https://doi.org/10.21009/JRSKT.102.05

Keywords:

aglomerasi, besi bervalensi nol (ZVI), reduksi garam besi

Abstract

Abstrak

Besi bervalensi nol (ZVI) telah berhasil disintesis dengan menggunakan reduktor alami polifenol dari ekstrak kulit pisang kepok. Kajian terhadap karakteristik ZVI hasil sintesis berupa ukuran, kristalinitas dan morfologi telah dilakukan dengan menggunakan spektrofotometer UV-Vis, particle size analyzer (PSA), X-ray difractometer (XRD), scanning electron microscope (SEM), dan fourier transform infra-red (FT-IR). Pengukuran konsentrasi Fe2+ yang bereaksi dengan polifenol divariasikan terhadap waktu, yaitu: 0 jam, 3 jam, 24 jam, 48 jam dan 144 jam. Konsentrasi Fe2+ yang bereaksi dengan polifenol terbesar terjadi ketika waktu reaksi 3 jam, yaitu 110465,22 ppm. Distribusi ukuran partikel ZVI hasil sintesis diamati dalam waktu reaksi 0,5 jam; 1 jam; 2 jam dan 3 jam. Waktu reaksi 1 jam menghasilkan distribusi ukuran partikel yang paling rendah, yaitu Dv 10 = 383,93 nm; Dv 50 = 537,17 nm; dan Dv 90 = 851,36 nm dengan polydispersity Index (PDI) sebesar 0,1240. Difrasi sinar-X menunjukkan ZVI hasil sintesis merupakan amorf yang terdiri dari fasa iron dan magnetite dengan presentase masing-masing berturut-turut 17,5 % dan  82,5%.

Kata kunci: aglomerasi, besi bervalensi nol (ZVI), reduksi garam besi

Abstract

Zero valent iron (ZVI) has been synthesized by using a natural reductant polyphenols extract from peel kepok banana. The study on the characteristics ZVI synthesized in the form of size, crystallinity and morphology has been carried out by using UV-Vis spectrophotometer, particle size analyzer (PSA), X-ray difractometer (XRD), scanning electron microscope (SEM), and fourier transform infra-red (FT-IR). Measurement of the concentration of Fe2+ which reacts with polyphenols varied with respect to time, ie: 0 hours, 3 hours, 24 hours, 48 hours and 144 hours. The concentration of Fe2+ which reacts with the largest polyphenols occur when reaction time of 3 hours, ie 110,465.22 ppm. ZVI particle size distribution of the results of the synthesis was observed within the reaction time of 0.5 hours; 1 hour; 2 hours and 3 hours. Reaction time of 1 hour to produce a particle size distribution of the lowest, ie Dv 10 = 383.93 nm; Dv 50 = 537.17 nm; and Dv 90 = 851.36 nm with a polydispersity index (PDI) of 0.1240. X-ray diffraction showed that synthesized ZVI is an amorphous phase consisting of iron and magnetite with the percentage of each respectively 17.5% and 82.5%.

Keywords: agglomeration, reduction of iron salt,  zero valent iron (ZVI)

References

Appel, C., Kuttich, B., Kraus, T., & Stühn, B. (2021). In situ investigation of temperature induced agglomeration in non-polar magnetic nanoparticle dispersions by small angle X-ray scattering. Nanoscale, 13(14), 6916–6920. https://doi.org/10.1039/d0nr08434d
Bashmil, Y. M., Ali, A., BK, A., Dunshea, F. R., & Suleria, H. A. R. (2021). Screening and Characterization of Phenolic Compounds from Australian Grown Bananas and Their Antioxidant Capacity. Antioxidants, 10(10), 1521. https://doi.org/10.3390/antiox10101521
Benincasa, C., Pellegrino, M., Romano, E., Claps, S., Fallara, C., & Perri, E. (2022). Qualitative and Quantitative Analysis of Phenolic Compounds in Spray-Dried Olive Mill Wastewater. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.782693
Blachowicz, T., Grzybowski, J., & Ehrmann, A. (2022). Micromagnetic Simulations of Nanoparticles with Varying Amount of Agglomeration. Macromolecular Symposia, 402(1). https://doi.org/10.1002/masy.202100381
Busatto, N., Matsumoto, D., Tadiello, A., Vrhovsek, U., & Costa, F. (2019). Multifaceted analyses disclose the role of fruit size and skin-russeting in the accumulation pattern of phenolic compounds in apple. PLOS ONE, 14(7), e0219354. https://doi.org/10.1371/journal.pone.0219354
Guo, G., & Zhang, H. (2021). The effect of morphology of ZnO particle on properties of asphalt binder and mixture. International Journal of Transportation Science and Technology, 11(3). https://doi.org/10.1016/j.ijtst.2021.05.005
Har-Shemesh, O., & Di Piazza, A. (2012). Peak intensity measurement of relativistic lasers via nonlinear Thomson scattering. Optics Letters, 37(8), 1352. https://doi.org/10.1364/ol.37.001352
Kalantari, E., Lucia, L., & Lavoine, N. (2022). Green synthesis, characterization, and catalytic application of a supported and magnetically isolable copper-iron oxide-sodium alginate. Green Synthesis and Catalysis, 3(2). https://doi.org/10.1016/j.gresc.2022.04.005
Karavasilis, M., & Tsakiroglou, C. D. (2019). Synthesis of Aqueous Suspensions of Zero-Valent Iron Nanoparticles (nZVI) from Plant Extracts: Experimental Study and Numerical Modeling. Emerging Science Journal, 3(6), 344–360. https://doi.org/10.28991/esj-2019-01197
Kharisov, B. I., Rasika Dias, H. V., Kharissova, O. V., Manuel Jiménez-Pérez, V., Olvera Pérez, B., & Muñoz Flores, B. (2012). Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Advances, 2(25), 9325. https://doi.org/10.1039/c2ra20812a
Lament, K., Nieszporek, J., & Piasecki, W. (2022). Electrochemical Analysis of Fe2+ Ions Behavior in the Metal Oxide Dispersions. Bulletin of the Chemical Society of Japan, 95(9), 1389–1395.
Lü, C., Amsler, M., & Chen, C. (2018). Unraveling the structure and bonding evolution of the newly discovered iron oxide FeO2. Physical Review, 98(5). https://doi.org/10.1103/physrevb.98.054102
Plessl, K., Russ, A., & Vollprecht, D. (2022). Application and development of zero-valent iron (ZVI) for groundwater and wastewater treatment. International Journal of Environmental Science and Technology, 20(6). https://doi.org/10.1007/s13762-022-04536-7
Ramaswamy, K., Jule, L. T., Nagaprasad, N., Subramanian, K., R, S., Dwarampudi L, P., & Seenivasan, V. (2022). Reduction of environmental chemicals, toxicity and particulate matter in wet scrubber device to achieve zero emissions. Scientific Reports, 12(1), 9170. https://doi.org/10.1038/s41598-022-13369-w
Ramos-Justicia, J. F., Ballester-Andújar, J. L., Urbieta, A., & Fernández, P. (2023). Growth of Zr/ZrO2 Core–Shell Structures by Fast Thermal Oxidation. Applied Sciences, 13(6), 3714–3714. https://doi.org/10.3390/app13063714
Tian, B., Li, F., Zhang, Y., Wang, S., Zhou, Z., Han, H., & Xu, C. (2021). Looking deeper: Decoding the core structure of a micron-sized S-ZVI particle. Chemical Engineering Journal, 417, 128092. https://doi.org/10.1016/j.cej.2020.128092
Wang, R., Liu, S., & Ma, Z. (2023). Recent Development of Versatile Polyphenol Platforms in Fertilizers and Pesticides. Journal of Agricultural and Food Chemistry, 71(25), 9599–9608. https://doi.org/10.1021/acs.jafc.3c01952
Wang, T., & Aguey-Zinsou, K.-F. (2019). Direct Synthesis of NaBH4 Nanoparticles from NaOCH3 for Hydrogen Storage. Energies, 12(23), 4428. https://doi.org/10.3390/en12234428
Yoon, J., Kim, Y. G., Choi, I. W., Sung, J. H., Lee, H. W., Lee, S. K., & Nam, C. H. (2021). Realization of laser intensity over 1023 W/cm2. Optica, 8(5), 630–630. https://doi.org/10.1364/optica.420520

Downloads

Published

2024-08-15

How to Cite

Hidayat, S., Budi, S., & Annisa, D. N. (2024). Sintesis dan Karakterisasi ZVI dari FeCl₂ dengan Polifenol dari Kulit Pisang Kepok (Musa paradisiaca normalis). JRSKT - Jurnal Riset Sains Dan Kimia Terapan, 10(2), 177–186. https://doi.org/10.21009/JRSKT.102.05