Validasi Metode Analisis Fosfor pada Sayuran dengan Pereduksi Stannous Chloride menggunakan Spektrofotometri Uv-Vis

Authors

  • Aulia Natasya Prodi Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam , Universitas Negeri Jakarta, Jl. Rawamangun Muka, Rawamangun, Jakarta Timur, DKI Jakarta 13220, Indonesia
  • Baiq Amelia Riyandari Program Studi Kimia, FMIPA, Universitas Islam Negeri Mataram, Jalan Gajah Mada No. 100 Jempong Baru, Mataram, Nusa Tenggara Barat, Indonesia

DOI:

https://doi.org/10.21009/JRSKT.102.06

Keywords:

fosfor, timah (II) klorida, spektrofotometri Uv-Vis

Abstract

Abstrak

Analisis fosfor dalam sayuran secara spektrofotometri UV-Vis telah dilakukan. Penelitian ini bertujuan mendapatkan kondisi optimum untuk analisis fosfor secara spektrofotometri UV-Vis, mendapatkan informasi pereduksi yang optimal dan pengaplikasian metode analisis fosfor yang memenuhi parameter validasi metode. Penelitian diawali dengan menentukan kondisi optimum analisis fosfat dengan spektrofotometri UV-Vis menggunakan pereaksi ammonium molibdat dan direduksi dengan timah (II) klorida dalam lingkungan asam menggunakan asam klorida (HCl). Selanjutnya metode analisis divalidasi berdasarkan parameter validasi metode. Reaksi molibdenum biru menghasilkan senyawa kompleks heterofosfomolibdat yang memiliki panjang gelombang maksimum 729 nm. Hasil validasi metode analisis fosfat yang direduksi dengan timah (II) klorida memiliki linieritas metode dengan R2=0,9983 pada rentang 0 – 0,05 mg L-1 . Absorptivitas molar sebesar 2,093 x 105 L mol-1 cm-1 . Serta batas deteksi sebesar 1,41 x 10-3 mg L-1 dan batas kuantisasi sebesar 4,28 x 10-3 mg L-1 . Nilai presisi dinyatakan sebagai persen standar deviasi relatif %RSD pada jagung, brokoli dan buncis masing-masing sebesar 1,93%, 1,37% dan 1,25%. Perolehan kembali didapatkan pada masingmasing sampel sayuran berkisar 99,36% - 109,50%. Berdasarkan hasil penelitian menunjukan fosfat yang terkandung dalam sayuran jagung, brokoli dan buncis tidak melebihi baku mutu menurut Persatuan Ahli Gizi Indonesia (PERSAGI).

Kata kunci: fosfor, timah (II) klorida, spektrofotometri UV-Vis

Abstract

Phosphorus analysis in vegetables using UV-Vis spectrophotometry has been carried out. This research aims to obtain optimum conditions for phosphorus analysis using UV-Vis spectrophotometry, obtaining optimal reducing information and application of phosphorus analysis methods that meet method validation parameters. The research began by determining the optimum conditions for phosphate analysis using UV-Vis spectrophotometry using reagents ammonium molybdate and reduced with tin (II) chloride in an acidic environment using hydrochloric acid (HCl). Next, the analysis method is validated based on the method validation parameters. The molybdenum blue reaction produces a heterophosphomolybdate complex compound which has a maximum wavelength 729 nm. The validation results of the analytical method for phosphate reduced with tin (II) chloride have method linearity with R2=0.9983 in the range 0 – 0.05 mg L-1 . The molar absorptivity is 2.093 x 105 L mol-1 cm-1. And the detection limit is 1.41 x 10-3 mg L-1 and a quantitation limit of 4.28 x 10-3 mg L-1. Precision values are expressed as percent relative standard deviation %RSD in corn, broccoli and beans respectively 1.93%, 1.37% and 1.25%. The recovery obtained for each vegetable sample ranged from 99.36 % - 109.50%. There are no phosphates contained in corn, broccoli and green beans exceeds quality standards according to the  Persatuan Ahli Gizi Indonesia (PERSAGI)

Keywords: phospore, tin (II) chloride, UV-Vis Spectrophotometry

References

Alzamel, N. M., Taha, E. M. M., Bakr, A. A. A., & Loutfy, N. (2022). Effect of Organic and Inorganic Fertilizers on Soil Properties, Growth Yield, and Physiochemical Properties of Sunflower Seeds and Oils. Sustainability, 14(19), 12928. https://doi.org/10.3390/su141912928
Anand, A., & Aoyagi, H. (2023). Understudied Hyperphosphatemia (Chronic Kidney Disease) Treatment Targets and New Biological Approaches. Medicina, 59(5), 959. https://doi.org/10.3390/medicina59050959
Dey, S., Veerendra, G. T. N., Phani Manoj, A. V., & Anjaneya Babu, P. S. S. (2023). Performances of plant leaf biosorbents for biosorption of phosphorous from synthetic water. Cleaner Materials, 8, 100191–100191. https://doi.org/10.1016/j.clema.2023.100191
Feng, Q., Kim, J. H., Omiyale, W., Bešević, J., Conroy, M., May, M., Yang, Z., Wong, S. Y., Tsoi, K. K., Allen, N., & Lacey, B. (2022). Raw and Cooked Vegetable Consumption and Risk of Cardiovascular Disease: A Study of 400,000 Adults in UK Biobank. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.831470
Flint, E. M., Ascott, M. J., Gooddy, D. C., Stahl, M. O., & Ben W.J. Surridge. (2023). Watermains Leakage and Outdoor Water Use Are Responsible for Significant Phosphorus Fluxes to the Environment Across the United States. Global Biogeochemical Cycles, 37(3). https://doi.org/10.1029/2022gb007614
Forber, K. J., Rothwell, S. A., Metson, G. S., Jarvie, H. P., & Withers, P. J. A. (2020). Plant-based diets add to the wastewater phosphorus burden. Environmental Research Letters, 15(9), 094018. https://doi.org/10.1088/1748-9326/ab9271
Habibah, N., Dhyanaputri, I. G. A. S., Karta, I. W., Sundari, C. D. W. H., & Hadi, M. C. (2018). A simple spectrophotometric method for the quantitative analysis of phosphate in the water samples. JST (Jurnal Sains Dan Teknologi), 7(2), 198. https://doi.org/10.23887/jst-undiksha.v7i2.13940
Hess, J. M., Cifelli, C. J., Agarwal, S., & Fulgoni, V. L. (2019). Comparing the cost of essential nutrients from different food sources in the American diet using NHANES 2011–2014. Nutrition Journal, 18(1). https://doi.org/10.1186/s12937-019-0496-5
Iqbal, M., Nazir, F., Maheshwari, C., Chopra, P., Himanshu Chhillar, & Nese Sreenivasulu. (2023). Mineral nutrients in plants under changing environments: A road to future food and nutrition security. The Plant Genome, 16(4). https://doi.org/10.1002/tpg2.20362
Kolodiazhnyi, O. I. (2021). Phosphorus Compounds of Natural Origin: Prebiotic, Stereochemistry, Application. Symmetry, 13(5), 889. https://doi.org/10.3390/sym13050889
Kumar, S., Kumar, S., & Mohapatra, T. (2021). Interaction Between Macro‐ and Micro-Nutrients in Plants. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.665583
Mng’ong’o, M. E., Munishi, L. K., & Ndakidemi, P. A. (2022). Increasing agricultural soil phosphate (P) status influences water P levels in paddy farming areas: Their implication on environmental quality. Case Studies in Chemical and Environmental Engineering, 6, 100259. https://doi.org/10.1016/j.cscee.2022.100259
Qin, Y., Li, H., Ma, S., Li, K., Zhang, X., Hou, D., Zheng, X., Wang, C., Lyu, P., Xu, S., & Zhang, W. (2022). Recovery and utilization of phosphorus from fruit and vegetable wastewater. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-021-04430-1
Raddatz, N., Morales de los Ríos, L., Lindahl, M., Quintero, F. J., & Pardo, J. M. (2020). Coordinated Transport of Nitrate, Potassium, and Sodium. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00247
Zhang, J., Sun, Y., Cao, Z., Li, C., Zhu, M., & Zhu, P. (2022). Long-term fertilization impacts on soil phosphorus forms using XANES and NMR spectroscopy. Archives of Agronomy and Soil Science/Archiv Für Acker- Und Pflanzenbau Und Bodenkunde, 69(8), 1266–1281. https://doi.org/10.1080/03650340.2022.2082417

Downloads

Published

2024-08-16

How to Cite

Natasya, A., & Riyandari, B. A. (2024). Validasi Metode Analisis Fosfor pada Sayuran dengan Pereduksi Stannous Chloride menggunakan Spektrofotometri Uv-Vis. JRSKT - Jurnal Riset Sains Dan Kimia Terapan, 10(2), 187–196. https://doi.org/10.21009/JRSKT.102.06