Conversational Implicatures with Elements of Rejection in the Japanese Drama Dear Sister
DOI:
https://doi.org/10.21009/kagami.151.02Keywords:
Conversational Implicature, Rejection, Japanese DramaAbstract
This research is to find out about the implicature with elements of rejection in the Japanese drama Dear Sister. The problems in this research are about the implied meaning of the rejection speech contained in the Japanese drama Dear Sister and classify the types of implicature in the Japanese drama Dear Sister using Grice's theory. This research is descriptive with qualitative approach. The methods used in this analysis are listening and note-taking methods. The data source used in this research is the Japanese drama series Dear Sister with a total of 10 episodes. From the results, 20 data were found with 8 meanings of rejection, namely the meaning of rejection of offers, gifts, orders, requests or requests, statements, invitations, suggestions, and praise. As for the results of the 20 data that the author has examined, the type of implicature that often appears is the conventional type of implicature, with the results of the conventional type of implicature as much as 14 data, while the unconventional type of implicature is 6 data. In this study, the data with the type of nonconventional implicature also contained violation of the maxim of relevance, violation of the maxim of manner, violation of the maxim of quality, compliance with the maxim of relevance, and compliance with the maxim of quality.
References
Prayuda, S. T. Achmad, W. H. Akbar Putra, “Analisis Kemampuan Pendeteksian Pengujian Eddy Current terhadap Crack Toe pada Sambungan Tee Material Alumnium 5083 yang Dilapisi Non-Conductive Coating dengan Variasi Kedalaman dan Panjang Crack,” Jurnal Teknik ITS, vol. 10, no. 1, pp. 14-21, 2021.
Nuri et al., “Penentuan Jenis Muatan Sel Darah Merah melalui Metode Dielektroporesis,” Variabel, vol. 3, no. 1, pp. 5-11, 2020.
M. Azam, “Pengujian Bahan Untuk Elektroda Pada Sistem Dielektroforesis,” Youngster Physics Journal, vol. 6, no. 2, pp. 186-190, 2017.
Wulandari, Ike Wahyuni, “Studi Literatur Review: Integrasi Kurikulum Pembelajaran Cerdas Biosensor Menggunakan Teknologi Internet of Things,” Jurnal Tiarsie, vol. 18, no. 3, pp. 97-101, 2021.
F. Amanah, “Pengaruh Konsentrasi Bakteri Asam Laktat Lactobacillus Casei Dan Lama Fermentasi Terhadap Karakteristik Kimia Tepung Kulit Singkong (Manihot Esculenta) Terfermentasi,” PhD dissertation, Universitas Islam Negeri Maulana Malik Ibrahim, 2020.
B. Sarno et al., “Dielectrophoresis: Developments and applications from 2010 to 2020,” Electrophoresis, vol. 42, no. 5, pp. 1-54, 2020.
S. Mahabadi, H. L. Fatima, P. H. Michael, “Effects of cell detachment methods on the dielectric properties of adherent and suspension cells,” Electrophoresis, vol. 36, no. 13, pp. 1493-1498, 2015.
Farahdiana et al., “Kepenggunaan Dielektroforesis (Dep) Di Dalam Pengasingan Zarah Bagi Aplikasi Buah Pinggang Tiruan,” Jurnal Kejuruteraan, Teknologi dan Sains Sosial, vol. 3, no. 2, pp. 40-46, 2017.
M. Azam et al., “Penentuan Konduktivitas Listrik dan Frekuensi Karakteristik Sel Ragi dengan Memanfaatkan Proses Dielektroforesis,” Majalah Ilmiah Biologi BIOSFERA: A Scientific Journal, vol. 27, no. 1, pp. 17-21, 2010.
S. Siagian et al., “Analisis Jumlah Muatan Listrik Serta Energi Pada Kapasitor Berdasarkan Konstanta Dielektrik Suatu Material,” ORBITA: Jurnal Kajian, Inovasi, dan Aplikasi Pendidikan Fisika, vol. 7, no. 1, pp. 176-180, 2021.
M. Sidi, B. Pahlanop Lapanporo, Y. Arman, “Perbandingan Kapasitansi dari Beberapa Jenis Bahan Menggunakan Kapasitor Silinder,” PRISMA FISIKA, vol. 8, no. 2, pp. 128-134, 2020.
Parnasari et al., “Studi Kapasitansi dan Konstanta Dielektrik Pada Karbon Aktif Tandan Kosong Kelapa Sawit,” PRISMA FISIKA, vol. 10, no. 1, pp. 98-104, 2022.
Holderman et al., “Identifikasi Bakteri Pada Pegangan Eskalator Di Salah Satu Pusat Pembelanjaan Di Kota Manado,” Jurnal Ilmiah Sains, vol. 17, no. 1, pp. 13-18, 2017.
Boleng, Didimus Tanah, “Morfologi dan Struktut Halus (Ultrastrucuture),” in Bakteriologi Konsep-Konsep Dasar, Malang: UMM Press, vol. 5, no. 1, pp. 27-42, 2015.
Koentjoro et al., “Sel Bakteri dan Struktur Dasar Penyusunnya,” In Dinamika Struktur Sel Bakteri, Surabaya: Jakad Media Publishing, vol. 1, no. 1, pp. 3-24, 2017.
Wagiranti, Hafidah, “Pembelajaran Biologis Beorientasi Wikipedia Untuk Meningkatkan Penguasaan Konsep dan Mengukur Keterampilan Literasi Informasi Pada Materi Bakteri,” PhD Thesis, FKIP UNPAS, 2019.
M. V. Kanevsky et al., “Electrophysical sensor systems for in vitro monitoring of bacterial metabolic activity,” Journal Pre-proof, vol. 10, pp. 3-27, 2022.
M. Elitas et al., “Dielectrophoresis as a single cell characterization method for bacteria,” Biomedical Physiscs & Engineering Express, vol. 3, no. 1, pp. 1-7, 2017.
Hasanuddin, “Bakteri Coccus Pada Pekasam Durian Makanan Khas Bengkulu,” Agro Industri, vol. 7, no. 1, 2017.
Restuaty, Ayu, “Uji Kualitaws Bakteri Escherichia Coli Pada Depot Air Minum Isi Ulang Di Kecamatan Bandung Wetan,” PhD dissertasi, FKIP UNPAS, 2016.
Wiranti, Ana, “Penentuan Frekuensi Karakteristik Sel Saccharomyces Cereviseae Pada Proses Dielektroforesis Menggunakan Elektroda Kawat Sejajar,” PhD dissertasi, FMIPA, Universitas Dipenogoro, 2016.
Alfiyah Dini, “Pengaruh Medan Elektromagnetik Pada Bakteri Staphylococcus aureus,” PhD dissertasi, FST Universitas Airlangga, 2012.
Tirono, Mokhamad, “Efek Medan Listrik Ac Terhadap Pertumbuhan Bakteri Klebsiella Pneumoniae,” Jurnal Neutrino, vol. 5, no. 2, pp. 116-122, 2013.
Mitic, V. Vojislav et al, “Clausius–Mossotti relation fractal modification,” Ferroelectrics, vol. 536, no. 1, pp. 60-76, 2018.
M. Salsabila, “Medan Listrik Berpulsa Untuk Menghambat Pertumbuhan Bakteri Salmonella Typhi Pada Susu Sapi Murni,” PhD dissertasi, FST UIN Maulana Malik Ibrahim, 2019.
Mustain, A. V. Fitrotin, “Pengaruh Konsentrasi Larutan Sukrosa Terhadap Nilai Konstanta Dielektrik Menggunakan Sensor Kapasitor,” PhD dissertasi, FMIPA, Universitas Jember, 2017.
S. L. Kusakari et al., “High voltage electric fields have potential to create new physical pest control systems,” Insects, vol. 11, no. 7, pp. 1-14, 2020.
Dell' Anna, Luca, M. Merano, “Clausius-Mossotti Lorentz-Lorenz relations and retardation effects for two-dimensional crystals,” Physical Review A, vol. 93, no. 5, pp. 1-6, 2016.
Dendi Hari, Sulistiyo, “Dampak Ukuran Butir Nanopartikel Copper Ferrite (Cufe2o4) Terhadap Sifat Dielektrik,” Jurnal Mekanikal, vol. 8, no. 2, pp. 777-783, 2017.
Griffiths, J. David, “Electric Fields In Matter,” In Introduction to Electrodynamics Fourth Edition, United States of America: Pearson Education Inc, vol. 4, no. 4, pp. 185-208, 2013.
Akl, A. Alaa, A. Safwat Mahmoud, “Effect of growth temperatures on the surface morphology, optical analysis, dielectric constants, electric susceptibility, Urbach and bandgap energy of sprayed NiO thin films,” Optik, vol. 127, pp. 783-793, 2018.
Yaghjian, D. Arthur D, “Maxwell's definition of electric polarization as displacement,” Progress In Electromagnetics Research M, vol. 88, pp. 65-72, 2020.
Didik, A. Lalu A, “Pengaruh Pemberian Medan Magnet Terhadap Konstanta Dielektrik Material AgCrO2,” KONSTAN, vol. 2, no. 1, pp. 1-4, 2016.
Griffiths, J. David, “Electric Fields In Matter,” In Introduction to Electrodynamics Fourth Edition, United States of America: Pearson Education Inc, vol. 4, no. 1, pp. 167-173, 2013.
Giancoli, C. Douglas C, “Gerak Rotasi”, In Fisika Prinsip dan Aplikasi, Jakarta: Erlangga, vol. 8, no. 4, pp. 258-259, 2014.
Jin, W. Chang, “Fabrication of a Dielectrophoretic Particle Trap,” In Conferences UWM Undergraduate Research Symposium, Milwaukee, p. 168, 2019.
C. Marios et al., “Simultaneous Tunable Selection and Self-Assembly of Si Nanowires from Heterogeneous Feedstock,” ACS Nano, vol. 10, no. 4, pp. 1-36, 2016.
Yousuff et al., “Microfluidic device for Multitarget separation using DEP techniques and its applications in clinical research,” In 2020 Sixth International Conference on Bio Signals, Images, and Instrumentation (ICBSII), IEEE, pp. 1-6, 2020.
Abd Rahman et al., “Dielectrophoresis for Biomedical Sciences Applications: A Review,” Sensors, vol. 17, no. 3, pp. 1-27, 2017.
Z. Talukder et al., “Dielectrophoretic separation of bioparticles in microdevices: A review,” Electrophoresis, vol. 35, no. 5, pp. 671-713, 2014.
M. Ammam, “Electrophoretic Deposition Under Modulated Electric Fields: a Review,” RSC ADVANCES, vol. 2, no. 20, pp. 7633-7646, 2012.
R. A. Serway, J. W. Jewett, “Fluids Mechanics,” in Ninth Edition Phyisic for Scientists and Engineers with Modern Physics, Boston: Cengage Learning, vol. 14, no. 5, pp. 427-430, 2014.
D. Banerjee et al., “Odd viscosity in chiral active fluids,” Nature communications, vol. 8, no. 1, pp. 1-12, 2017.
Lubis, A. Nur, “Pengaruh Kekentalan Cairan Terhadap Waktu Jatuh Benda Menggunakan Falling Ball Method,” Fisitek : Jurnal Ilmu Fisika dan Teknologi, vol. 2, no. 2, pp. 27-28, 2018.
Giancoli, “Fluids,” In Physics Principles With Applications, Michigan: Prentice-Hall, vol. 10, no. 11, p. 279, 2015.
Yang, Hongli et al., “General formulas for drag coefficient and settling velocity of sphere based on theoretical law,” International Journal of Mining Science and Technology, vol. 25, no. 2, pp. 219-223, 2015.
C. Zhang et al., “Determination of the scalar friction factor for nonspherical particles and aggregates across the entire Knudsen number range by direct simulation Monte Carlo (DSMC),” Aerosol Science and Technology, vol. 46, no. 10, pp. 1065-1078, 2012.
F. M. White, “Dimensional Analysis and Similarity,” In Fluid Mechanics 8Th Edition In SI Units, Noida : Mc Graw Hill India, vol. 5, no. 4, pp. 304-313, 2017.
G. J. Rubinstein, J. J. Derksen, S. Sundaresan, “Lattice Boltzmann simulations of low-Reynolds-number flow past fluidized spheres: effect of Stokes number on drag force,” Journal of Fluid Mechanics, vol. 788, pp. 576-601, 2016.
Gopalakrishnan et al., “The electrical mobilities and scalar friction factors of modest-to-high aspect ratio particles in the transition regime,” Journal of Aerosol Science, vol. 82, pp. 24-39, 2015.
Wang et al., “Clausius-Mossotti Relation Revisited: Media with Electric and Magnetic Response,” arXiv preprint arXiv:2008.09178, 2020.
B. Sarno et al., “Dielectrophoresis: Developments and applications from 2010 to 2020,” Electrophoresis, vol. 42, no. 5, pp. 539-564, 2021.
J. Cottet et al., “MyDEP: a new computational tool for dielectric modeling of particles and cells,” Biophysical journal, vol. 116, no. 1, pp. 12-18, 2019.
M. Azam, “Simulasi Numerik Gaya Dielektroforesis Pada Biopartikel Berbentuk Bola,” Youngster Physics Journal, vol. 6, no. 2, pp. 110-114, 2017.
B. Techaumnat et al., “Study on the discrete dielectrophoresis for particle-Cell separation,” ELECTROPHORESIS, vol. 41, no. 1-11, pp. 991-1001, 2020.
M. Elitas et al., “Dielectrophoresis as a single cell characterization method for bacteria,” Biomedical Phys. Eng. Express, vol. 3, no. 1, pp. 2-8, 2017.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Fitri Fauziyyah
This work is licensed under a Creative Commons Attribution 4.0 International License.