THE EFFECT OF POLY (ETHYLENE GLYCOL) ON THE PHOTOLUMINESCENCE PROPERTIES OF CARBON DOTS FROM CASSAVA PEELS SYNTHESIZED BY HYDROTHERMAL METHODS
DOI:
https://doi.org/10.21009/SPEKTRA.041.02Keywords:
carbon dots, cassava peels, photoluminescenceAbstract
Carbon dots (C-dots) have been successfully synthesized from cassava peels using the hydrothermal method. The C-dots are further passivated using poly (ethylene glycol) (PEG) with a variation of the volume of 0.5 ml, 1.0 ml, and 1.5 ml. The properties of photoluminescence C-dots before and after PEG were characterized using photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectrophotometers. PEG succeeded in influencing PL C-dots properties, such as peak wavelength, PL intensity, and electron time decay. The addition of 0.5 ml of PEG to C-dots is the optimum condition and best with the peak wavelength, the PL intensity and, time decay electron is 507.52 nm, 5302 a.u, and 3.794031133 ns, respectively.
References
[2] M. Algarra, et al., “Luminescent carbon nanoparticles: Effects of chemical functionalization, and evaluation of Ag+ sensing properties,†J. Mater. Chem. A, vol. 2, no. 22, pp. 8342–8351, 2014.
[3] X. Xu, et al., “Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments,†J. Am. Chem. Soc., vol. 126, no. 40, pp. 12736–12737, 2004.
[4] S. Sugiarti and N. Darmawan, “Synthesis of Fluorescence Carbon Nanoparticles from Ascorbic Acid,†Indonesian Journal of Chemistry, 15(2), pp. 141-145, 2015.
[5] Y. Fang, et al., “Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles,†ACS Nano, vol. 6, no. 1, pp. 400–409, 2012.
[6] V. Strauss, et al., “Carbon nanodots: Toward a comprehensive understanding of their photoluminescence,†J. Am. Chem. Soc., vol. 136, no. 49, pp. 17308–17316, 2014.
[7] L. Bao, C. Liu, Z. L. Zhang, and D. W. Pang, “Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning,†Adv. Mater., vol. 27, no. 10, pp. 1663–1667, 2015.
[8] P. Z. Z. Ngu, S. P. P. Chia, J. F. Y. Fong, and S. M. Ng, “Synthesis of carbon nanoparticles from waste rice husk used for the optical sensing of metal ions,†New Carbon Mater., vol. 31, no. 2, pp. 135–143, 2016.
[9] Isnaeni, I. Rahmawati, R. Intan, and M. Zakaria, “Photoluminescence study of carbon dots from ginger and galangal herbs using microwave technique,†J. Phys. Conf. Ser., no. 985, p. 012004, 2018.
[10] W. Liu, H. Diao, H. Chang, H. Wang, T. Li, and W. Wei, “Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging,†Sensors Actuators B Chem., vol. 241, pp. 190–198, 2017.
[11] A. Tadesse, D. R. Devi, M. Hagos, G. R. Battu, and K. Basavaiah, “Facile green synthesis of fluorescent carbon quantum dots from citrus lemon juice for live cell imaging,†Asian J. Nanosci. Mater., vol. 1, no. 1, pp. 36–46, 2018.
[12] P. A. Putro, L. Roza, and Isnaeni, “Karakterisasi sifat fotoluminisensi C-dots dari kulit ari singkong menggunakan teknik microwave,†Pros. Semin. Nas. Fis. FMIPA UNESA, vol. 2, pp. 168–173, 2018.
[13] P. A. Putro, L. Roza, and Isnaeni, “Karakterisasi sifat optik C-dots dari kulit luar singkong menggunakan teknik microwave,†J. Teknol. Technoscientia, vol. 11, no. 2, pp. 128–136, 2019.
[14] A. M. Alam, B. Y. Park, Z. K. Ghouri, M. Park, and H. Y. Kim, “Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: Excellent imaging agent for biomedical applications,†Green Chem., vol. 17, no. 7, pp. 3791–3797, 2015.
[15] A. Kumar, A. R. Chowdhuri, D. Laha, T. K. Mahto, P. Karmakar, and S. K. Sahu, “Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging,†Sensors Actuators B Chem., vol. 242, pp. 679–686, 2017.
[16] H. P. S. Castro, M. K. Pereira, V. C. Ferreira, J. M. Hickmann, and R. R. B. Correia, “Optical characterization of carbon quantum dots in colloidal suspensions,†Opt. Mater. Express, vol. 7, no. 2, pp. 5801–5806, 2017.
[17] L. Zheng, Y. Chi, Y. Dong, J. Lin, and B. Wang, “Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite,†J. Am. Chem. Soc., vol. 131, no. 13, pp. 4564–4565, 2009.
[18] H. Li, X. He, Y. Liu, H. Huang, S. Lian, S. T. Lee, and Z. Kang, “One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties,†Carbon N. Y., vol. 49, no. 2, pp. 605–609, 2011.
[19] M. Farshbaf, S. Davaran, F. Rahimi, N. Annabi, R. Salehi, and A. Akbarzadeh, “Carbon quantum dots: Recent progresses on synthesis, surface modification, and applications,†Artif. Cells, Nanomedicine, Biotechnol., vol. 46, no. 7, pp. 1331–1348, 2017.
[20] S. Sahu, B. Behera, T. K. Maiti, and S. Mohapatra, “Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-Imaging agents,†Chem. Commun., vol. 48, no. 70, pp. 8835–8837, 2012.
[21] A. Prasannan and T. Imae, “One-pot synthesis of fluorescent carbon dots from orange waste peels,†Ind. Eng. Chem. Res., vol. 52, no. 44, pp. 15673–15678, 2013.
[22] H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, and X. Yang, “Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties,†Chem. Commun., vol. 4, no. 34, pp. 5118–5120, 2009.
[23] A. Jaiswal, S. S. Ghosh, and A. Chattopadhyay, “One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol),†Chem. Commun., vol. 48, no. 3, pp. 407–409, 2012.
[24] Isnaeni, M. Y. Hanna, A. A. Pambudi, and F. H. Murdaka, “Influence of ablation wavelength and time on optical properties of laser ablated carbon dots,†AIP Conf. Proc., vol. 1801, no. 020001, pp. 1–5, 2017.
[25] Q. Li, M. Zhou, M. Yang, Q. Yang, Z. Zhang, and J. Shi, “Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices,†Nat. Commun., vol. 9, no. 734, pp. 1–8, 2018.
[26] J. R. Lakowicz, Principles of Fluorescence Spectroscopy. Springer US, 2006.
[27] T. Yoshinaga, Y. Iso, and T. Isobe, “Particulate, structural, and optical properties of D-glucose-derived carbon dots synthesized by microwave-assisted hydrothermal treatment,†ECS J. Solid State Sci. Technol., vol. 7, no. 1, pp. R3034–R3039, 2018.
[28] X. Dong, L. Wei, Y. Su, Z. Li, H. Geng, C. Yang, and Y. Zhang, “Efficient long lifetime room temperature phosphorescence of carbon dots in a potash alum matrix,†J. Mater. Chem. C, vol. 3, February, pp. 2798–2801, 2015.
[29] M. Chang, L. Li, H. Hu, Q. Hu, A. Wang, and X. Cao, “Using fractional intensities of time-resolved fluorescence to sensitively quantify NADH/NAD + with genetically encoded fluorescent biosensors,†Sci. Rep., vol. 7, no. 4209, pp. 1–9, 2017.
[30] Z. L. Wu, P. Zhang, M. X. Gao, C. F. Liu, W. Wang, F. Leng, and C. Z. Huang, “One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bio-imaging from Bombyx mori silk-natural proteins,†J. Mater. Chem. B, no. 22, pp. 2868–2873, 2013.
[31] O. Kozák, M. Sudolská, G. Pramanik, P. CÃgler, M. Otyepka, and R. ZboÅ™il, “Photoluminescent carbon nanostructures,†Chem. Mater., vol. 28, no. 12, pp. 4085–4128, 2016.
[32] A. Sachdev, I. Matai, and P. Gopinath, “Implications of surface passivation on physicochemical and bioimaging properties of carbon dots,†RSC Adv., vol. 4, no. 40, pp. 20915–20921, 2014.
[33] H. Ding, S. B. Yu, J. S. Wei, and H. M. Xiong, “Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism,†ACS Nano, vol. 10, no. 1, pp. 484–491, 2016.
[34] S. Fatimah, Isnaeni, and D. Tahir, “Sintesis dan karakterisasi fotoluminisens carbon dots berbahan dasar organik dan limbah organik,†POSITRON, vol. VII, no. 2, pp. 37–41, 2017.
[35] X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, and A. L. Rogach, “Color-switchable electroluminescence of carbon dot light-emitting diodes,†ACS Nano, vol. 7, no. 12, pp. 11234–11241, 2013.
[36] B. P. Jiang, Y. X. Yu, X. L. Guo, Z. Y. Ding, B. Zhou, H. Liang, and X. C. Shen, “White-emitting carbon dots with long alkyl-chain structure: Effective inhibition of aggregation-caused quenching effect for label-free imaging of latent fingerprint,†Carbon N. Y., vol. 128, pp. 12–20, 2018.
[37] S. K. Bhunia, A. Saha, A. R. Maity, S. C. Ray, and N. R. Jana, “Carbon nanoparticle-based fluorescent bioimaging probes,†Sci. Rep., vol. 3, pp. 1473–1479, 2013.
[38] B. B. Campos, et al., “Carbon dots coated with vitamin B12 as selective ratiometric nanosensor for phenolic carbofuran,†Sensors Actuators, B Chem., vol. 239, pp. 553–561, 2017.
[39] A. Nevin, et al., “Time-resolved photoluminescence spectroscopy and imaging: new approaches to the analysis of cultural heritage and its degradation,†Sensors, vol. 14, no. 4, pp. 6338–6355, 2014.
Downloads
Published
How to Cite
Issue
Section
License
SPEKTRA: Jurnal Fisika dan Aplikasinya allow the author(s) to hold the copyright without restrictions and allow the author(s) to retain publishing rights without restrictions. SPEKTRA: Jurnal Fisika dan Aplikasinya CC-BY or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work. In developing strategy and setting priorities, SPEKTRA: Jurnal Fisika dan Aplikasinya recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
SPEKTRA: Jurnal Fisika dan Aplikasinya is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
Share - copy and redistribute the material in any medium or format
Adapt - remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.