SEED MEDIATED SYNTHESIS OF HEXAGONAL S-DOPED ZnO NANOROD AND ITS PHYSICAL PROPERTIES

Authors

  • Yolanda Rati Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau, Kampus Bina Widya, Jl. H.R Soebrantas, Km. 12,5 Sp. Baru 28293, Panam, Tampan, Pekanbaru, Riau, Indonesia
  • Akrajas Ali Umar Institute of Microengineering and Nanoelectronics, University Kebangsaan Malaysia , Bangi 43600, Selangor, Malaysia
  • Yanuar Hamzah Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau, Kampus Bina Widya, Jl. H.R Soebrantas, Km. 12,5 Sp. Baru 28293, Panam, Tampan, Pekanbaru, Riau, Indonesia
  • Ari Sulistyo Rini Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau, Kampus Bina Widya, Jl. H.R Soebrantas, Km. 12,5 Sp. Baru 28293, Panam, Tampan, Pekanbaru, Riau, Indonesia

DOI:

https://doi.org/10.21009/SPEKTRA.061.03

Keywords:

ZnO nanorod, sulfur doping, hexagonal, seed-mediated hydrothermal

Abstract

Sulfur-doped zinc oxide (S-ZnO) nanorod has been successfully synthesized via the seed-mediated hydrothermal method with different sulfur concentrations (0%, 1%, 2.5%). This research aims to study the influence of the concentration of sulfur on the structure, morphology, and optical properties of ZnO as a promising material in a wide range of applications.  Crystal structure, morphology, and optical properties of the samples were characterized using  X-Ray Diffraction (XRD), Field Emission Electron Scanning Microscopy (FESEM), and UV-Vis Spectroscopy, respectively. The XRD pattern shows the strongest peak at 2θ = 34.43° for crystal orientation of (002). The crystallinity properties of the S-ZnO sample are higher compared to the ZnO sample.  The FESEM images of the 1% S-ZnO sample exhibit the highest nanorod density arrangement. The optical absorbance of the higher sulfur dopant possesses a higher optical absorption peak on the UV-Vis spectrum. The results indicate that S doping to ZnO can alter the structural, morphological, and optical properties of ZnO.

References

[1] L. C. Chen and Z. L. Tseng, “ZnO-Based Electron Transporting Layer for Perovskite Solar Cells,” Nanostructured Sol. Cells, pp. 203-215, February 2017.
[2] E. Hidayanto, H. Sutanto, and K. S. Firdausi, “Pembuatan Lapisan Fotokatalis Zinc Oxide (ZnO) dengan Teknik Spray Coating dan Aplikasinya pada Pengering Jagung,” Berk. Fis, vol. 16, no. 4, pp. 119-124, 2013.
[3] Z. Lin and J. Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays Author(s): Zhong Lin Wang and Jinhui Song Source,” Science (80), vol. 312, no. 5771, pp. 242-246, 2006.
[4] H. Morkoc and U. Ozgur, “Zinc Oxide: Fundamentals, Materials and Device Technology,” in Processing, Devices, and Heterostructures, Federal Republic ofGerman: WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 446-454, 2009.
[5] M. Torabi et al., “We are IntechOpen, the world ’ s leading publisher of Open Access books Built by scientists, for scientists TOP 1 %,” Intech, vol. 1, no. tourism, p. 13, 2016.
[6] O. Bayram et al., “Investigation of structural, morphological and optical properties of Nickel-doped Zinc oxide thin films fabricated by co-sputtering,” J. Mater. Sci. Mater. Electron, vol. 30, no. 4, pp. 3452-3458, 2019.
[7] G. G. Rusu et al., “Preparation and characterization of Mn-doped ZnO thin films,” J. Optoelectron. Adv. Mater, vol. 12, no. 4, pp. 895-899, 2010.
[8] I. Iwantono et al., “Enhanced charge transfer activity in Au nanoparticles decorated ZnO nanorods photoanode,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 111, pp. 44-50, 2019.
[9] F. A. Garcés et al., “Structural Analysis of ZnO(: Al,Mg) Thin Films by X-ray Diffraction,” Procedia Mater. Sci, vol. 8, pp. 551–560, November 2015.
[10] A. S. Alshammari et al., “Visible-light photocatalysis on C-doped ZnO derived from polymer-assisted pyrolysis,” RSC Adv, vol. 5, no. 35, pp. 27690-27698, 2015.
[11] R. Jothi Ramalingam et al., “Synthesis, characterization and optical properties of sulfur and fluorine-doped ZnO nanostructures for visible light utilized catalysis,” Optik (Stuttg), vol. 148, pp. 325-331, 2017.
[12] V. Kumari et al., “S-, N- and C-doped ZnO as semiconductor photocatalysts: A review,” Front. Mater. Sci, vol. 13, no. 1, pp. 1-11, 2019.
[13] A. Khan et al., “A novel fabrication methodology for sulfur-doped ZnO nanorods as an active photoanode for improved water oxidation in visible-light regime,” Nanotechnology, vol. 28, no. 5, pp.1-9, 2017.
[14] E. Maryanti, “Sintesis Mikro Partikel ZnO Terdoping Sulfur Alam ( ZnO : S ) Melalui Metode Mechanochemical,” pp. 137-142, 2013.
[15] D. Polsongkram et al., “Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method,” Phys. B Condens. Matter, vol. 403, no. 19-20, pp. 3713-3717, 2008.
[16] Y. Tao et al., “The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method,” J. Alloys Compd, vol. 489, no. 1, pp. 99-102, 2010.

Downloads

Published

2021-04-30

How to Cite

Rati, Y., Umar, A. A., Hamzah, Y., & Rini, A. S. (2021). SEED MEDIATED SYNTHESIS OF HEXAGONAL S-DOPED ZnO NANOROD AND ITS PHYSICAL PROPERTIES. Spektra: Jurnal Fisika Dan Aplikasinya, 6(1), 19–24. https://doi.org/10.21009/SPEKTRA.061.03