MODIFICATION OF PURUN TIKUS (ELEOCHARIS DULCIS) AS A NATURAL FIBER COMPOSITE USING KMnO4 AND NaOH

Authors

  • Ninis Hadi Haryanti Physics Study Program FMIPA, Lambung Mangkurat University, Banjarbaru 70714, Indonesia
  • Suryajaya Suryajaya Physics Study Program FMIPA, Lambung Mangkurat University, Banjarbaru 70714, Indonesia
  • Lies Banowati Nurtanio University, Bandung, Indonesia
  • Mawaddatur Rahmah Physics Study Program FMIPA, Lambung Mangkurat University, Banjarbaru 70714, Indonesia
  • Akhmad Safi'i Physics Study Program FMIPA, Lambung Mangkurat University, Banjarbaru 70714, Indonesia

DOI:

https://doi.org/10.21009/SPEKTRA.061.05

Keywords:

purun tikus fiber, chemical properties, physical properties, mechanical properties, composite materials

Abstract

The choice of natural fibers as a composite reinforcing material is related to the advantages of being cheap, abundant, renewable, and environmentally friendly. This research was conducted to study the effect of de-lignification treatment on the properties of purun tikus (Eleocharis Dulcis) fiber. Purun tikus fiber has been modified with the alkaline treatment of KMnO4 2% and NaOH 5%. This treatment was mainly applied to improve the physical and chemical properties of purun tikus fiber. Changes in chemical characteristics (water, lignin, cellulose, and hemicellulose), physical (density), mechanical (tensile strength), morphology, and elemental content of purun tikus before and after treated with alkaline were studied. The measurements showed an increase in water content and density while lignin, cellulose, and hemicellulose were decreased. Thus the alkaline treatment of KMnO4 2% and NaOH 5% reduced lignin, cellulose, and hemicellulose of the purun tikus fiber to reduce the size of the fibers, as shown in SEM measurements. There was a change in elemental content after being treated with KMnO4 2% and NaOH 5%. NaOH treatment was better than KMnO4 treatment in terms of removing lignin and hemicellulose in purun tikus fiber. Although the tensile strength of the purun fibers treated with KMnO4 2% and NaOH 5% were lower than untreated, with less lignin, cellulose, and hemicellulose, it is expected that these fibers will blend better in the composite and improved its mechanical properties.

References

[1] I. N. P. Nugraha et al., “Analisis perbandingan kekuatan material hasil rekayasa serat alam Agave sisal dan gebang untuk rancangan body kendaraan listrik Ganesha1.0 generasi I,” in Seminar Nasional Vokasi dan Teknologi, pp. 329-339, 2016.
[2] B. Wang et al., “Flax fiber-reinforced thermoplastic composites J. Soc. Eng. Agric. Food,” Biol. Syst, 2003.
[3] Maryanti et al., “Pengaruh alkalisasi komposit serat kelapa poliester terhadap kekuatan tarik,” Rekayasa Mesin, vol. 2, no. 2, pp. 123-129, 2011.
[4] S. Asikin and M. Thamrin, “Manfaat purun tikus (Eleocharis dulcis) pada ekosistem sawah rawa,” Litbang Pertan, vol. 31, no. 1, pp. 35-42, 2012.
[5] N. S. Prihatini et al., “Potensi Purun Tikus (Eleocharis dulcis) Sebagai Biofilter Proc. Environ. Talk Towar. A Better Green Living June p. 154–165, 2011.
[6] H. Wardhana and N. H. Haryanti, “The characteristics of purun tikus particle board cement board,” IOSR Journal of Appl. Chemistry, vol. 10, no. 1, 2017.
[7] N. H. Haryanti and H. Wardhana, “Purun tikus ( Eleocharis dulcis ) fiber composition as cement board composite material,” J. Biodivers. Environ. Sci, vol. 11, no. 3, pp. 137-142, 2017.
[8] N. H. Suryajaya Haryanti, S. Husain and M. Safitri, “Preliminary study of activated carbon from water chestnut ( Eleocharis dulcis ),” Journal of Physcs, Conf. Ser, vol. 1572, no. 1, p. 012053, 2020.
[9] H Soemarno A Rachmansyah and Fathurrazie A, 2015 Chemical, Physical, and Mechanical Features of Purun Tikus (Eleocharis dulcis) Fiber Asian Acad. Res. J. Multidiciplinary 2 p. 127–134.
[10] K. Witono et al., “Pengaruh perlakuan alkali (NaOH) terhadap morfologi dan kekuatan tarik serat mendong,” Rekayasa Mesin, vol. 4, no. 3, pp. 227-234, 2013.
[11] Kosjoko, A. A. Sonief and D. Sutikno, “Pengaruh waktu perlakuan kalium permanganate (KMnO4) terhadap sifat mekanik komposit serat purun tikus ( Eleocharis dulcis ),” Rekayasa Mesin, vol. 2, no. 3, pp. 193-198, 2011.
[12] H. Wardhana and N. H. Haryanti, “Variasi komposisi serat purun tikus (Eleocharis dulcis) dan waktu perendaman KMnO4 terhadap sifat fisik komposit papan semen,” in Seminar Nasional Tahunan VI, pp. 30-38, 2019.
[13] Sulihingtyas, W. Dwijani and I. P. A. S. Mahardika, “Pembuatan dan karakterisasi arang aktif dari batang tanaman gumitir (Tagetes erecta) yang diaktivasi dengan H3PO4 Kimia,” vol. 11, no. 1, pp. 1-9, 2017.
[14] Indonesia national standard (SNI) No. 01- 6235 - 2000.
[15] Indonesia National Standar (SNI) No. 0444 -1989.
[16] L. Boopathi, P. S. Sampath and K. Mylsamy, “Investigation of physical, chemical and mechanical properties of raw and alkali treated borassus fruit fiber Compos,” Part B 43, vol. 8, pp. 3044-3052, 2012.
[17] Kosjoko, “Upaya peningkatan kualitas sifat mekanik komposit serat purun tikus ( Eleocharis dulcis ) bermatriks polyester dengan perlakuan NaOH,” in Seminar Nasional Tahunan Teknik Mesin XIV (SNTTM XIV), pp. 1-5, 2015.
[18] L. Lismeri et al., “Aplikasi fiber selulosa dari limbah batang ubi kayu sebagai film komposit berbasis low density polyethylene (LDPE),” in Seminar Nasional Kulit, Karet dan Plastik, vol. 7, pp. 69-82, 2018.
[19] K. Boimau and T. D. Cunha, “Pengaruh panjang serat terhadap sifat bending komposit poliester berpenguat serat daun gewang,” in Seminar Nasional Tahunan Teknik Mesin XIV (SNTTM XIV), pp. 1-4, 2015.
[20] Q. Liu, L. Luo and L. Zheng, “Lignins: Biosynthesis and biological functions in plants,” International journal of molecular sciences, vol. 19, no. 335, pp. 1-16, 2018.
[21] Andrade-Mahecha et al., “Achira as a source of biodegradable materials: Isolation and characterization of nanofibers,” Carbohydr. Polym, vol. 123, pp. 406-415, 2015.
[22] K. Jha et al., “Potential biodegradable matrices and fiber treatment for green composites: A review AIMS Mater. Sci,” vol. 6, no. 1, pp. 119-138, 2019.
[23] H. S. Wibisono, Jasni and W. O. M. Arsyad, “Komposisi kimia dan keawetan alami delapan jenis kayu di bawah naungan,” Jurnal Penelitian Hasil hutan, vol. 36, no. 1, pp. 59-65, 2018.
[24] J. P. Reddy and J. W. Rhim, “Extraction and characterization of cellulose microfibers from agricultural wastes of onion and garlic,” Journal of Natural Fibers, vol. 15, no. 4 pp. 465-473, 2018.
[25] S. Sun, X. Cao and R. Sun, “The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials,” Bioresour Technology, vol. 199, pp. 49-58, 2016.
[26] C. Masyitah and B. Aritonang, “The preparation and characterization of paper from durian rind and bagasse using alkalization separation method,” International Journal of Respiratory Medicine, vol. 1, no. 1, pp. 32-38, 2019.
[27] L. H. Saputri and R. Sukmawan, “Pengaruh proses blending dan ultrasonikasi terhadap struktur morfologi ekstrak serat limbah batang kelapa sawit untuk bahan baku bioplastik (selulosa asetat),” Rekayasa, vol. 13, no. 1, pp. 15-21, 2020.
[28] H. Qi, “Nanocellulose-based functional materials SpringerBriefs,” in Applied Sciences and Technology, 2017.
[29] C. I. P. K. Kencanawati et al., “Pengaruh perlakukan alkali terhadap sifat fisik dan mekanik serat kulit buah pinang,” Jurnal Energi dan Manufaktur, vol. 11, no. 1, pp. 6-10, 2018.
[30] N. Rambabu et al., “Production of nanocellulose fibers from pinecone biomass: Evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films,” Ind. Crops Prod, vol. 83, pp. 746-754, 2016.

Downloads

Published

2021-04-30

How to Cite

Haryanti, N. H. ., Suryajaya, S., Banowati, L., Rahmah, M., & Safi’i, A. (2021). MODIFICATION OF PURUN TIKUS (ELEOCHARIS DULCIS) AS A NATURAL FIBER COMPOSITE USING KMnO4 AND NaOH. Spektra: Jurnal Fisika Dan Aplikasinya, 6(1), 37–48. https://doi.org/10.21009/SPEKTRA.061.05