Effect of 30˚C Electrolyte Temperature on The Sensitivity Cu/Ni

Authors

  • Moh. Toifur Magister of Physics Education, FKIP Ahmad Dahlan University, Jl. Pramuka No. 42 Sidikan Umbulharjo, Yogyakarta 55161, Indonesia
  • Rizka Nuzul Islamiyati Magister of Physics Education, FKIP Ahmad Dahlan University, Jl. Pramuka No. 42 Sidikan Umbulharjo, Yogyakarta 55161, Indonesia

DOI:

https://doi.org/10.21009/SPEKTRA.091.01

Keywords:

copper coil, Cu/Ni coating, electrolyte solution temperature, electroplating, sensitivity

Abstract

Given the necessity of cryogenic storage and monitoring cryogenic temperatures is equally important. This study aims to determine the resistance value and sensitivity of copper wire before and after electroplating at 30˚C electrolyte temperature as a low temperature sensor. The electrolyte solution consists of NiSO4 260 g, NiCl2 60 g, H3BO3 40 g and Aquades 1000 mL. Electroplating was carried out with an electrolyte temperature of 30˚C, electrode distance of 4 cm, voltage of 4.5 volts and plating time of 4 minutes. The plating results were analyzed to determine the resistance and sensitivity of the sensor at temperatures from 0 to -160˚C. The results showed that the resistance value of the Cu coil obtained RCu = (1.44 ± 0.00) ohm and the resistance of the Cu/Ni coil RCu / Ni = (1.50 ± 0.00) ohm. The resistance value on the Cu/Ni coil (after plating) is greater than the Cu coil (before plating). While the test results of sensor sensitivity show that Cu and Cu/Ni coils have properties as low temperature sensors. Sensor sensitivity increases after plating. The sensitivity value obtained by Cu coil is S(T) = -1E-06T + 6E-05 and Cu/Ni coil S(T) = -2E-06T + 2E-05. The projection sensitivity at a temperature of -200 ˚C obtained is 0.00046 V/˚C less than the Cu/Ni coil 0.00082 V/˚C. So nickel plating on copper coil at 30˚C electrolyte temperature has successfully improved the sensitivity value of the low-temperature sensor.

References

[1] I. S. Jawahir et al., “Cryogenic Manufacturing Processes,” CIRP Ann. - Manuf. Technol., vol. 65, no. 2, pp. 713–736, 2016, doi: 10.1016/j.cirp.2016.06.007.
[2] A. Biglia et al., “Case Studies in Food Freezing at Very Low Temperature,” Energy Procedia, vol. 101, no. September, pp. 305–312, 2016, doi: 10.1016/j.egypro.2016.11.039.
[3] K. Fikiin et al., “Refrigerated Warehouses as Intelligent Hubs to Integrate Renewable Energy in Industrial Food Refrigeration and to Enhance Power Grid Sustainability,” Trends Food Sci. Technol., vol. 60, no. February, pp. 96–103, 2017, doi: 10.1016/j.tifs.2016.11.011.
[4] T. K. Goswami, “Recent Trends of Application of Cryogenics in Food Processing and Preservation,” iMedPub Journals, vol. 1, no. 3:27, pp. 1–4, 2017.
[5] M. Toifur et al., “Investigation on Performance of Cu/Ni Film as Low Temperature Sensor,” IOP Conf. Ser. Mater. Sci. Eng., vol. 924, no. 1, 2020, doi: 10.1088/1757-899X/924/1/012024.
[6] V. de Miguel-Soto et al., “Study of Optical Fiber Sensors for Cryogenic Temperature Measurements,” Sensors (Switzerland), vol. 17, no. 12, pp. 1–12, 2017, doi: 10.3390/s17122773.
[7] M. A. Satrio et al., “Rancang Bangun Pembelajaran Praktik Sensor Suhu dan Cahaya,” Mechatronics J. Prof. Enterp., pp. 37–42, 2020, [Online].
[8] M. Lebioda and J. Rymaszewski, “Dynamic Properties of Cryogenic Temperature Sensors,” Prz. Elektrotechniczny, vol. 91, no. 2, pp. 225–227, 2015, doi: 10.15199/48.2015.02.51.
[9] Y. Wang et al., “Fabrication and Characterization of ITO Thin Film Resistance Temperature Detector,” Vacuum, vol. 140, pp. 121–125, 2017, doi: 10.1016/j.vacuum.2016.07.028.
[10] J. Fraden, Handbook of Modern Sensors. 2020.
[11] S. Singgih and M. Toifur, “Pengukuran Nilai Resistivitas Plat Tipis Cu-Ni Hasil Elektroplating Variasi Konsentrasi Larutan dan Jarak Katoda sebagai Sensor Suhu Rendah Berbasis Resistance Temperature Detector (RTD),” no. June, 2020.
[12] R. Riswanto, “Analisis Resistansi Coil Kawat Tembaga Terhadap Perubahan Suhu Sangat Rendah Sebagai Rancang Dasar Pengukuran Suhu Rendah,” J. Pendidik. Fis., vol. 3, no. 1, pp. 73–83, 2015, doi: 10.24127/jpf.v3i1.23.
[13] H. C. Chuang et al., “The Effects of Ultrasonic Agitation on Supercritical CO2 Copper Electroplating,” Ultrason. Sonochem., vol. 40, no. June 2017, pp. 147–156, 2018, doi: 10.1016/j.ultsonch.2017.06.029.
[14] S. Prasad et al., “Effect of Nickel Electroplating on the Mechanical Damping and Storage Modulus of Metal Matrix Composites,” 2018.
[15] A. Hankhuntod et al., “α-Fe2O3 Modified TiO2 Nanoparticulate Films Prepared by Sparking Off Fe Electroplated Ti Tips,” Appl. Surf. Sci., vol. 477, pp. 116–120, 2019, doi: 10.1016/j.apsusc.2017.11.224.
[16] B. Yang and X. He, “Experimental Investigation of Surface Color Changes in Vacuum Evaporation Process for Gold-like Stainless Steel,” MATEC Web Conf., vol. 43, pp. 3–7, 2016, doi: 10.1051/mateccont/20164303004.
[17] H. C. Chuang et al., “The Characteristics of Nickel Film Produced by Supercritical Carbon Dioxide Electroplating with Ultrasonic Agitation,” Ultrason. Sonochem., vol. 57, no. May, pp. 48–56, 2019, doi: 10.1016/j.ultsonch.2019.05.005.
[18] Y. H. Ahmad and A. M. A. Mohamed, “Electrodeposition of Nanostructured Nickel-Ceramic Composite Coatings: A Review,” Int. J. Electrochem. Sci., vol. 9, no. 4, pp. 1942–1963, 2014.
[19] R. Fiqry at al., “Ketebalan dan Nilai Resitivitas Lapisan Tipis Cu/Ni/Cu/Ni Hasil Penumbuhan dengan Metode Elektroplating pada Variasi Tegangan Deposisi (V),” Semin. Nas. Edusainstek, pp. 46–54, 2018.
[20] E. Hamidun and M. Toifur, “Pembuatan Lapisan Cu / Ni pada Variasi Waktu Deposisi Berbantuan Medan Magnet,” pp. 1–5, 2019.
[21] M. Toifur et al., “Pengaruh Waktu Deposisi pada Tebal Lapisan, Struktur Mikro, Resistivitas Keping Lapisan Tipis Cu/Ni Hasil Deposisi dengan Teknik Elektroplating,” vol. 07, no. 02, pp. 33–43, 2017.
[22] J. Wustha et al., “Thickness and Resistivities of Cu/Ni Film Resulted by Electroplating on the Various Electrolyte Temperature,” J. Phys. Conf. Ser., vol. 1373, no. 1, 2019, doi: 10.1088/1742-6596/1373/1/012029.
[23] R. Agung et al., “Pengaruh Suhu Anil Terhadap Ketebalan dan Resistivitas Lapisan Tipis Cu / Ni Hasil Elektroplating Berbantuan Medan Magnet,” Pros. Semin. Nas. Mhs. Unimus, vol. 2, pp. 436–443, 2019.
[24] X. Qiao et al., “Effects of Deposition Temperature on Electrodeposition of Zinc-Nickel Alloy Coatings,” Electrochim. Acta, vol. 89, pp. 771–777, 2013, doi: 10.1016/j.electacta.2012.11.006.
[25] M. Toifur et al., “Microstructure, Thickness and Sheet Resistivity of Cu/Ni Thin Film Produced by Electroplating Technique on the Variation of Electrolyte Temperature,” J. Phys. Conf. Ser., vol. 997, no. 1, 2018, doi: 10.1088/1742-6596/997/1/012053.

Downloads

Published

2024-04-18

How to Cite

Toifur, M., & Islamiyati, R. N. (2024). Effect of 30˚C Electrolyte Temperature on The Sensitivity Cu/Ni. Spektra: Jurnal Fisika Dan Aplikasinya, 9(1), 1–10. https://doi.org/10.21009/SPEKTRA.091.01