Thickness Measurement and Sensitivity of Copper/Nickel Electroplating Results of Electrolyte Solution Temperature Variation

Authors

  • Rizka Nuzul Islamiyati Master of Physics Education, FKIP Ahmad Dahlan University, Yogyakarta, 55161, Indonesia
  • Moh. Toifur Master of Physics Education, FKIP Ahmad Dahlan University, Yogyakarta, 55161, Indonesia
  • Okimustava Okimustava Master of Physics Education, FKIP Ahmad Dahlan University, Yogyakarta, 55161, Indonesia

DOI:

https://doi.org/10.21009/SPEKTRA.092.01

Keywords:

electrolyte temperature variation, electroplating, copper coil, temperature sensor

Abstract

Currently, cryogenic thermometers are needed and one of the uses of cryogenic thermometers is to measure the temperature of food preservation flasks. Research has been conducted on the manufacture of cryogenic thermometers derived from Cu/Ni coils by electroplating process with temperature variation treatment of electrolyte solution. The purpose of this study is to determine the effect of electrolyte solution temperature variation treatment on Ni thickness and Cu/Ni sensitivity as a low-temperature sensor. Electroplating was carried out with electrolyte temperature parameters of 30˚C-70˚C, electrode distance of 4 cm, voltage of 4.5 volts, and coating time of 4 minutes. The electrolyte solution was a mixture of NiSO4 260 g, NiCl2 60 g, H3BO3 40 g, and Aquades 1000 mL. Based on the results of the study, a remarkable condition was obtained on the thickness of Ni; namely, at 40 ˚C, the thickness increased to 1.08 mm. In addition, the best temperature can produce the greatest sensitivity value in Cu/Ni coil electroplating, namely at 50 ˚C.

References

I. S. Jawahir et al., “Cryogenic Manufacturing Processes,” CIRP Ann. - Manuf. Technol., vol. 65, no. 2, pp. 713–736, 2016, doi: 10.1016/j.cirp.2016.06.007.

A. Biglia, L. Comba, E. Fabrizio, P. Gay, and D. Ricauda Aimonino, “Case Studies in Food Freezing at Very Low Temperature,” Energy Procedia, vol. 101, no. September, pp. 305–312, 2016, doi: 10.1016/j.egypro.2016.11.039.

K. Fikiin et al., “Refrigerated Warehouses as Intelligent Hubs to Integrate Renewable Energy in Industrial Food Refrigeration and to Enhance Power Grid Sustainability,” Trends Food Sci. Technol., vol. 60, no. February, pp. 96–103, 2017, doi: 10.1016/j.tifs.2016.11.011.

T. K. Goswami, “Recent Trends of Application of Cryogenics in Food Processing and Preservation,” J. Food Nutr. Popul. Health, vol. 1, no. 3:27, pp. 1–4, 2017.

M. Toifur, J. Saputra, Okimustava, and A. Khusnani, “The Effect of Magnetic Field on the Performance of Cu/Ni As Low-Temperature Sensor,” Int. J. Sci. Technol. Res., vol. 9, no. 1, pp. 3526–3532, 2020.

V. de Miguel-Soto et al., “Study of Optical Fiber Sensors for Cryogenic Temperature Measurements,” Sensors (Switzerland), vol. 17, no. 12, pp. 1–12, 2017, doi: 10.3390/s17122773.

M. Lebioda and J. Rymaszewski, “Dynamic Properties of Cryogenic Temperature Sensors,” Prz. Elektrotechniczny, vol. 91, no. 2, pp. 225–227, 2015, doi: 10.15199/48.2015.02.51.

Y. Wang, C. Zhang, J. Li, G. Ding, and L. Duan, “Fabrication and Characterization of ITO Thin Film Resistance Temperature Detector,” Vacuum, vol. 140, pp. 121–125, 2017, doi: 10.1016/j.vacuum.2016.07.028.

P. W. Raharjo and M. Toifur, “Kawat Solenoida sebagai Sensor Suhu Berbasis Resistor Temperature Detector Coils ( RTD-C ),” Pros. Pertem. Ilm. XXVIII HFI Jateng DIY, pp. 168–169, 2014.

R. D. Prasetiyo, M. Toifur, and A. Khusnani, “Hubungan Suhu Anil dengan Perubahan Nilai Resistivitas Lapisan Tipis Cu / Ni Hasil Deposisi Menggunakan Teknik Elektroplating,” Semin. Nas. Quantum, vol. 25, no. 8, pp. 2477–1511, 2018.

T. Chowdhury, H. Bulbul, and B. S. I. Eee, “Design of a Temperature Sensitive Voltage Regulator for AC Load using RTD,” Int. J. Eng. Sci. Technol., vol. 2, no. 12, pp. 7896–7903, 2010.

M. Toifur, B. Haryadi, and R. Riswanto, “Cow Cement Sensor Based On Coil - Resistance Temperature Detector ( C-RTD ) Coupled With Four Wire Configuration Bridge (4-WCB),” no. January, 2014, doi: 10.2991/icopia-14.2015.26.

J. Fraden, Handbook of Modern Sensors, 5th ed., Springer, 2016. ISBN: 978-3319193032.

S. Singgih and M. Toifur, "Pengukuran nilai resistivitas plat tipis Cu-Ni hasil elektroplating variasi konsentrasi larutan dan jarak katoda sebagai sensor suhu rendah berbasis resistance temperature detector (RTD)," presented at the Pekan Ilmiah Fisika XIX 2016 HIMAFI UNY, 2016.

R. Riswanto, “Analisis Resistansi Coil Kawat Tembaga Terhadap Perubahan Suhu Sangat Rendah Sebagai Rancang Dasar Pengukuran Suhu Rendah,” J. Pendidik. Fis., vol. 3, no. 1, pp. 73–83, 2015, doi: 10.24127/jpf.v3i1.23.

W. Schleich, “Application of Copper-Nickel Alloy UNS C70600 for Seawater Service,” presented at the CORROSION 2005, Houston, Texas, April 2005.

H. C. Chuang, H. M. Yang, G. L. Wu, J. Sánchez, and J. H. Shyu, “The Effects of Ultrasonic Agitation on Supercritical CO2 Copper Electroplating,” Ultrason. Sonochem., vol. 40, no. June 2017, pp. 147–156, 2018, doi: 10.1016/j.ultsonch.2017.06.029.

S. Prasad, D. S. Ebenezer, N. C. Shoba, and S. Rao Pujari, "Effect of Nickel Electroplating on the Mechanical Damping and Storage Modulus of Metal Matrix Composites," Materials Research Express, vol. 5, no. 11, 2018, doi: 10.1088/2053-1591/aadf0b.

A. Hankhuntod, E. Kantarak, W. Sroila, T. Kumpika, P. Singjai, and W. Thongsuwan, “α-Fe2O3 Modified TiO2 Nanoparticulate Films Prepared by Sparking Off Fe Electroplated Ti Tips,” Appl. Surf. Sci., vol. 477, pp. 116–120, 2019, doi: 10.1016/j.apsusc.2017.11.224.

B. Yang and X. He, “Experimental Investigation of Surface Color Changes in Vacuum Evaporation Process for Gold-like Stainless Steel,” MATEC Web Conf., vol. 43, pp. 3–7, 2016, doi: 10.1051/mateccont/20164303004.

Y. H. Ahmad and A. M. A. Mohamed, "Electrodeposition of Nanostructured Nickel-Ceramic Composite Coatings: A review," International Journal of Electrochemical Science, vol. 9, no. 4, pp. 1942–1963, 2014. doi: 10.1016/S1452-3981(23)07903-8.

L. Jinlong, L. Tongxiang, and W. Chen, “Effect of Electrodeposition Temperature on Grain Orientation and Corrosion Resistance of Nanocrystalline Pure Nickel,” J. Solid State Chem., vol. 240, pp. 109–114, 2016, doi: 10.1016/j.jssc.2016.05.025.

M. Toifur, “Pengaruh Jumlah Lilitan dan Diameter Kawat Terhadap Suseptibilitas Magnet Udara Bersuhu Sangat Rendah dari 157 K – 253 K,” J. Sains Dasar, vol. 2, pp. 65–71, 2013.

R. Fiqry, M. Toifur, and A. Khusnani, “Ketebalan dan Nilai Resitivitas Lapisan Tipis Cu/Ni/Cu/Ni Hasil Penumbuhan dengan Metode Elektroplating pada Variasi Tegangan Deposisi (V),” Semin. Nas. Edusainstek, pp. 46–54, 2018.

M. Toifur, N. Agustin, A. Khusnani, and Okimustava, “Investigation on Performance of Cu/Ni Film as Low Temperature Sensor,” IOP Conf. Ser. Mater. Sci. Eng., vol. 924, no. 1, 2020, doi: 10.1088/1757-899X/924/1/012024.

E. Hamidun and M. Toifur, “Pembuatan Lapisan Cu/Ni pada Variasi Waktu Deposisi Berbantuan Medan Magnet,” pp. 1–5, 2019.

M. Toifur, N. A, Okimustava, and I. Sukarelawan, “Pengaruh Waktu Deposisi pada Tebal Lapisan, Struktur Mikro, Resistivitas Keping Lapisan Tipis Cu/Ni Hasil Deposisi dengan Teknik Elektroplating,” vol. 07, no. 02, pp. 33–43, 2017.

J. Wustha, M. Toifur, and A. Khusnani, “Thickness and Resistivities of Cu/Ni Film Resulted by Electroplating on the Various Electrolyte Temperature,” J. Phys. Conf. Ser., vol. 1373, no. 1, 2019, doi: 10.1088/1742-6596/1373/1/012029.

R. Agung, M. Toifur, and A. Khusnani, “Pengaruh Suhu Anil Terhadap Ketebalan dan Resistivitas Lapisan Tipis Cu / Ni Hasil Elektroplating Berbantuan Medan Magnet,” Pros. Semin. Nas. Mhs. Unimus, vol. 2, pp. 436–443, 2019.

X. Qiao, H. Li, W. Zhao, and D. Li, “Effects of Deposition Temperature on Electrodeposition of Zinc-Nickel Alloy Coatings,” Electrochim. Acta, vol. 89, pp. 771–777, 2013, doi: 10.1016/j.electacta.2012.11.006.

L. Aguilera et al., “Influence of electrodeposition temperature in the electrochemical properties of Ni(OH)2: An experimental and theoretical study,” Thin Solid Films, vol. 670, pp. 24–33, 2019, doi: 10.1016/j.tsf.2018.12.007.

C. Singh, S. Tiwari, and R. Singh, “Exploring environment friendly nickel electrodeposition on AZ91 magnesium alloy: Effect of prior surface treatments and temperature of the bath on corrosion behaviour,” Corrosion Science, vol. 152, pp. 123-134, 2019, doi: 10.1016/j.corsci.2019.02.004.

S. Sarkar, “Platinum RTD sensor based multi-channel high-precision temperature measurement system for temperature range −100°C to +100°C using single quartic function,” Cogent Eng., vol. 5, no. 1, pp. 1–15, 2018, doi: 10.1080/23311916.2018.1558687.

M. Toifur, Y. Yuningsih, and A. Khusnani, “Microstructure, Thickness and Sheet Resistivity of Cu/Ni Thin Film Produced by Electroplating Technique on the Variation of Electrolyte Temperature,” J. Phys. Conf. Ser., vol. 997, no. 1, 2018, doi: 10.1088/1742-6596/997/1/012053.

A. M. Rashidi and A. Amadeh, “The Effect of Saccharin Addition and Bath Temperature on The Grain Size of Nanocrystalline Nickel Coatings,” Surf. Coatings Technol., vol. 204, no. 3, pp. 353–358, 2009, doi: 10.1016/j.surfcoat.2009.07.036.

Downloads

Published

2024-08-12

How to Cite

Islamiyati, R. N., Toifur, M., & Okimustava, O. (2024). Thickness Measurement and Sensitivity of Copper/Nickel Electroplating Results of Electrolyte Solution Temperature Variation. Spektra: Jurnal Fisika Dan Aplikasinya, 9(2), 65–74. https://doi.org/10.21009/SPEKTRA.092.01