The Effects of Stellar Wind, Rotation Velocity, and Overshoot Parameters on The Evolution of Massive Stars using MESA: Case Study of MPG 324, MPG 355, MPG 682

Authors

  • Alin Hafizhah Adira Astronomy Study Program, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia
  • Aprilia Astronomy Study Program, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia

DOI:

https://doi.org/10.21009/SPEKTRA.092.06

Keywords:

stellar evolution, massive stars, MESA Software, stellar wind, overshoot

Abstract

Massive stars (over 8 solar masses) undergo intricate cosmic journeys. Their evolution, shaped by parameters like stellar wind, rotation velocity, and overshoot, generally includes the pre-main sequence, main sequence, and post-main sequence phases. In the post-main sequence, they become supergiant stars, then Wolf-Rayet stars, experience a supernova, and end as neutron stars or black holes. This study models the evolutionary path of massive stars using MESA software, considering stellar wind, rotation velocity, and overshoot. Three stars from the Small Magellanic Cloud galaxy—MPG 324, MPG 355, and MPG 682—are used to represent the mass range described in the Conti Scenario. The model is compared to Conti Scenario and observational data, showing good agreement with luminosity, effective temperature, and evolutionary phase, though not yet at final stages. This provides valuable insights into stellar evolution.

References

J. S. Vink, “The theory of stellar winds,” arXiv, 2011. DOI: 10.48550/ARXIV.1112.0952.

G. Meynet and A. Maeder, “Stellar evolution with rotation. I. The computational method and the inhibiting effect of the μ-gradient,” J. Astron. Astrophys., vol. 321, pp. 465–476, 1997.

S. Ekström, “Massive star modeling and nucleosynthesis,” Frontiers Astron. Space Sci., vol. 8, 2021. DOI: 10.3389/fspas.2021.617765.

J. Jin, C. Zhu, and G. Lü, “Convection and convective overshooting in stars more massive than 10 M⊙,” Pub. Astron. Soc. Japan, vol. 67, no. 2, p. 19, 2015. DOI: 10.1093/pasj/psu153.

J. Groh, “Effects of low metallicity on the evolution and spectra of massive stars,” Geneva Observatory, Geneva, PowerPoint Presentation, 2015. [Online]. Available: https://users.obs.carnegiescience.edu/gwen/searle/groh_pasadena_highz_galaxies_2015jul14.pdf.

O. R. Pols, Stellar Structure and Evolution Lecture Notes, Netherlands: Astronomical Institute Utrecht, 2011.

H. Wang et al., “Evolutionary tracks of massive stars with different rotation and metallicity in neutrino H-R diagram,” Mon. Not. R. Astron. Soc., vol. 526, no. 3, pp. 4335–4344, 2023. DOI: 10.1093/mnras/stad3071.

D. Temaj et al., “Convective-core overshooting and the final fate of massive stars,” J. Astron. Astrophys., vol. 682, p. A123, 2023. DOI: 10.1051/0004-6361/202347434.

J. Choi, C. Conroy, and N. Byler, “The evolution and properties of rotating massive star populations,” Astrophys. J., vol. 838, p. 159, 2017. DOI: 10.3847/1538-4357/aa679f.

J. Josiek, S. Ekström, and A. A. C. Sander, “Impact of main sequence mass loss on the appearance, structure, and evolution of Wolf-Rayet stars,” J. Astron. Astrophys., vol. 688, p. A71, 2024. DOI: 10.1051/0004-6361/202449281.

A. C. Gormaz-Matamala et al., “Evolution of massive stars with new hydrodynamic wind models,” J. Astron. Astrophys., vol. 665, p. A133, 2022. DOI: 10.1051/0004-6361/202243959.

B. Paxton et al., “Modules for experiments in stellar astrophysics (MESA): Planets, oscillations, rotation, and massive stars,” Astrophys. J. Suppl. Ser., vol. 208, no. 1, p. 4, 2013. DOI: 10.1088/0067-0049/208/1/4.

S. Ekström et al., “Red supergiants and stellar evolution,” arXiv, 2013. DOI: 10.48550/ARXIV.1303.1629.

J.-C. Bouret et al., “Massive stars at low metallicity,” J. Astron. Astrophys., vol. 555, 2013. DOI: 10.1051/0004-6361/201220798.

D. Graczyk et al., “A distance determination to the small magellanic cloud with an accuracy of better than two percent based on late-type eclipsing binary stars,” Astrophys. J., vol. 904, p. 13, 2020. DOI: 10.3847/1538-4357/abbb2b.

B. Paxton et al.,, “Modules for experiments in stellar astrophysics (MESA),” Astrophys. J. Suppl. Ser., vol. 192, no. 1, p. 3, 2010. DOI: 10.1088/0067-0049/192/1/3.

E. Moravveji et al., “Sub-inertial gravity modes in the B8V star KIC 7760680 reveal moderate core overshooting and low vertical diffuse mixing,” Astrophys. J., vol. 823, p. 130, 2016. DOI: 10.3847/0004-637X/823/2/130.

S. Ekström, “Massive star modelling and nucleosynthesis,” Frontiers Astron. Space Sci., vol. 8, 2021. DOI: 10.3389/fspas.2021.617765.

D. J. Lennon, C. J. Evans, and C. Trundle, “Massive stars in the SMC,” arXiv, 2005. DOI: 10.48550/ARXIV.ASTROPH/0511840.

S. Ekström et al., “Grids of stellar models with rotation,” J. Astron. Astrophys., vol. 537, p. A146, 2012. DOI: 10.1051/0004-6361/201117751.

L. J. A. Scott et al., “Convective core entrainment in 1D main-sequence stellar models,” Mon. Not. R. Astron. Soc., vol. 503, no. 3, pp. 4208–4220, 2021. DOI: 10.1093/mnras/stab752.

Downloads

Published

2024-12-19

How to Cite

Adira, A. H., & Aprilia. (2024). The Effects of Stellar Wind, Rotation Velocity, and Overshoot Parameters on The Evolution of Massive Stars using MESA: Case Study of MPG 324, MPG 355, MPG 682. Spektra: Jurnal Fisika Dan Aplikasinya, 9(3), 189–198. https://doi.org/10.21009/SPEKTRA.092.06