ANALYSIS OF LATTICE PARAMETER, ERROR, AND THE BANDGAP ENERGY IN CADMIUM SULFIDE (CdS) SEMICONDUCTOR MATERIAL
DOI:
https://doi.org/10.21009/SPEKTRA.062.04Keywords:
CdS, lattice parameter, error, bandgap energyAbstract
Has successfully analyzed the lattice parameter, error, and energy band gap of Cadmium Sulfide (CdS) material. CdS is a semiconductor material. In this study, the CdS used is a material with a cubic crystal structure using database from the International Center for Diffraction Data (ICDD), then the data is calculated using the Cramer-Cohen method. From these data the resulting lattice parameter of a = b = c = 5.823791777 Å with an average error of 0.00034%. The band gap energy calculation of CdS material is 2.477 eV.
References
[2] A. A. Setiawan et al., “Crystalline structures properties doped RuO2 (0, 2, 4, 6%) of thin film LiNbO3,” Sriwijaya International Conference on Basic and Applied Science, vol. 1282, no. 012059, pp. 1-6, 2019, doi: 10.1088/1742-6596/1282/1/012059.
[3] C. S. Draper, J. F. Mahfouf and J. P. Walker, “An EKF assimilation of AMSR-E soil moisture into the ISBA land surface scheme,” Journal of Geophysical Research, vol. 114, no. D20104, pp. 1-13, 2009, doi: 10.1029/2008JD011650.
[4] K. Deane, Smith and C. F. Cline, “Verification of existence of cubic zirconia at high temperature,” Discussions and Notes, vol. 45, no. 5, p. 249, 1962, doi: 10.1111/j.1151-2916.1962.tb11135.x.
[5] N. Djohan et al., “Crystalline structure and optical properties of thin film LiTaO3,” IOP Conference Series Earth and Environmental Science, vol. 284, pp. 1-8, 2019, doi: 10.1088/1755-1315/284/1/012039.
[6] T. Inoue et al., “Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders,” Nature, vol. 277, pp. 637-638, 1979, doi: 10.1038/277637a0.
[7] J. M. Crowley, Jamil Tahir-Kheli and W. A. Goddard, “Resolution of the Band Gap Prediction Problem for Materials Design,” The Journal of Physical Chemistry, vol. 7, pp. 1198-1203, 2016, doi: 10.1021/acs.jpclett.5b02870.
[8] J. Awaka et al., “Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12,” The Chemical Society of Japan, vol. 40, pp. 60¬-62, 2011, doi: 10.1246/cl.2011.60.
[9] J. Khatter, R. P. Chauhan, “Effect of temperature on properties of cadmium sulfide nanostructures synthesized by solvothermal method,” J Mater Sci Mater Electron, vol. 31, pp. 2676-2685, 2020, doi: 10.1007/s10854-019-02807-7.
[10] M. Moghaddam et al., “Improved optical and structural properties of cadmium sulfide nanostructures for optoelectronic applications,” Ceramics International, vol. 46, pp. 1-8, 2019, doi:10.1016/j.ceramint.2019.11.234.
[11] M. Zhang et al., “Tuning electrical and raman scattering properties of cadmium sulfide nanoribbons via surface charge transfer doping,” The Journal of Physical Chemistry, vol. 123, pp. 15794-15801, 2019, doi: 10.1021/acs.jpcc.9b02938.
[12] M. Tsay, “Journal self-citation study for semiconductor literature: Synchronous and diachronous approach,” Information Processing and Management, vol. 42, pp. 1567-1577, 2006, doi: 10.1016/j.ipm.2006.03.020.
[13] M. Tsay, H. Xu, C. Wu, “Journal co-citation analysis of semiconductor literature,” Scientometrics, vol. 57, no. 1, pp. 7-25, 2003, doi: 10.1023/a:1023667318934.
[14] M. Imran et al., “Modified eccentric descriptors of crystal cubic carbon,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 22, no. 7, pp. 1215-1228, 2019, doi: 10.1080/09720529.2019.1700922.
[15] R. Komanduria, N. Chandrasekarana, L. M. Raff, “Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel,” International Journal of Mechanical Sciences, vol. 43, pp. 2237-2260, 2001, doi: 10.1246/cl.2011.60.
[16] R. Ochoa-Landín et al., “Chemically deposited CdS by an ammonia-free process for solar cells window layers,” Solar Energy, vol. 84, pp. 208-214, 2010, doi: 10.1016/j.solener.2009.11.001.
[17] K. V. Shanavas et al., “First-principles study of the effect of organic ligands on the crystal structure of cds nanoparticles,” The Journal of Physical Chemistry C, vol. 116, pp. 6507-6511, 2012, doi: 10.1021/jp2079428.
[18] D. P. Simon et al., “Error analysis of continuous GPS position time series,” Journal of Geophysical Research, vol. 109, no. B03412, pp. 1-19, 2004, doi: 10.1029/2003JB002741.
[19] K. Stephen et al., “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis,” Journal of Applied Physics, vol. 82, no. 7, pp. 3334-3340, 1997, doi: 10.1063/1.365643.
[20] T. Triliana, E. C. M. Asih, “Analysis of students errors in solving probability based on Newman’s error analysis,” Journal of Physics Conference Series, vol. 1211, no. 012061, pp. 1-6, 2019, doi: 10.1088/1742-6596/1211/1/012061.
[21] D. S. Tsai et al., “A simple method for the determination of lattice parameters from powder X-Ray diffraction data,” Materials Transactions JIM, vol. 30, pp. 474-479, 1989, doi: 10.2320/matertrans1989.30.474.
[22] W. Gao et al., “Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures,” Journal Moleculs, vol. 22, no. 1496, pp. 1-12, 2017, doi: 10.3390/molecules22091496.
[23] W. Safriani et al., “Analysis of Students Errors on the Fraction Calculation Operations Problem,” Al-Jabar Jurnal Pendidikan Matematika, vol. 10, no. 2, pp. 307 – 318, 2019.
[24] Z. Jamal et al., “Lattice constants analysis of baxsr1-xtio3 ceramic for (x =0.3; 0.5 and 0.7) by visual basic program,” Journal of Nuclear and Related Technology, vol. 4, pp. 137-142, 2007, doi: 10.1.1.673.4536.
[25] Q. Zhang et al., “Microstructure and nanoindentation behavior of Cu composites reinforced with graphene nanoplatelets by electroless co deposition technique,” Scientific Reports, vol. 7, pp. 1-12, 2017, doi: 10.1038/s41598-017-01439-3.
[26] A. Kurniawan and Irzaman, “Android based XRD data analysis software design for cube crystal structure with analytic and cohen methods,” AIP Conf. Proc, vol. 2320, March 2021, doi: 10.1063/5.0037472.
[27] S. M. Sze, “Physics of Semiconductor Devices,” 2nd edition New York, John Wile & Sons Inc, 1981.
[28] G. S. Gildenblat and P. E. Schmidt, “Diamond (C),” Handbook on Semiconductor Parameters, vol. 1, pp. 58-76, 1992.
Downloads
Published
How to Cite
Issue
Section
License
SPEKTRA: Jurnal Fisika dan Aplikasinya allow the author(s) to hold the copyright without restrictions and allow the author(s) to retain publishing rights without restrictions. SPEKTRA: Jurnal Fisika dan Aplikasinya CC-BY or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work. In developing strategy and setting priorities, SPEKTRA: Jurnal Fisika dan Aplikasinya recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
SPEKTRA: Jurnal Fisika dan Aplikasinya is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
Share - copy and redistribute the material in any medium or format
Adapt - remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.