ANALYSIS OF LATTICE PARAMETER, ERROR, AND THE BANDGAP ENERGY IN CADMIUM SULFIDE (CdS) SEMICONDUCTOR MATERIAL

Authors

  • Kamelia Fikriah Departemen Fisika, FMIPA, IPB, Kampus IPB Dramaga Bogor, Jawa Barat, Indonesia, 16680
  • Talitha Alya Syaharani Departemen Fisika, FMIPA, IPB, Kampus IPB Dramaga Bogor, Jawa Barat, Indonesia, 16680
  • Fitri Melinda Departemen Fisika, FMIPA, IPB, Kampus IPB Dramaga Bogor, Jawa Barat, Indonesia, 16680
  • Lulu Lutfiah Departemen Fisika, FMIPA, IPB, Kampus IPB Dramaga Bogor, Jawa Barat, Indonesia, 16680
  • Nada Huwaidah Departemen Fisika, FMIPA, IPB, Kampus IPB Dramaga Bogor, Jawa Barat, Indonesia, 16680
  • Agnes Tiara Vinanda Departemen Fisika, FMIPA, IPB, Kampus IPB Dramaga Bogor, Jawa Barat, Indonesia, 16680
  • Indriyati Rahmi Setyani Departemen Fisika, FMIPA, IPB, Kampus IPB Dramaga Bogor, Jawa Barat, Indonesia, 16680
  • Meutia Awani Departemen Fisika, FMIPA, IPB, Kampus IPB Dramaga Bogor, Jawa Barat, Indonesia, 16680
  • Alfi Afriliani Departemen Fisika, FMIPA, IPB, Kampus IPB Dramaga Bogor, Jawa Barat, Indonesia, 16680
  • Irmansyah Irmansyah Departemen Fisika, FMIPA, IPB, Kampus IPB Dramaga Bogor, Jawa Barat, Indonesia, 16680
  • Irzaman Irzaman Departemen Fisika, FMIPA, IPB, Kampus IPB Dramaga Bogor, Jawa Barat, Indonesia, 16680

DOI:

https://doi.org/10.21009/SPEKTRA.062.04

Keywords:

CdS, lattice parameter, error, bandgap energy

Abstract

Has successfully analyzed the lattice parameter, error, and energy band gap of Cadmium Sulfide (CdS) material. CdS is a semiconductor material. In this study, the CdS used is a material with a cubic crystal structure using database from the International Center for Diffraction Data (ICDD), then the data is calculated using the Cramer-Cohen method. From these data the resulting lattice parameter of a = b = c = 5.823791777 Å with an average error of 0.00034%. The band gap energy calculation of CdS material is 2.477 eV.

References

[1] Andrew Mills, Stephen Le Hunte, “An overview of semiconductor photocatalysis,” J. of Photochemistry and Photobiology A Chemistry, vol. 108, pp. 1-35, 1997, doi: 10.1016/S1010-6030(97)00118-4.
[2] A. A. Setiawan et al., “Crystalline structures properties doped RuO2 (0, 2, 4, 6%) of thin film LiNbO3,” Sriwijaya International Conference on Basic and Applied Science, vol. 1282, no. 012059, pp. 1-6, 2019, doi: 10.1088/1742-6596/1282/1/012059.
[3] C. S. Draper, J. F. Mahfouf and J. P. Walker, “An EKF assimilation of AMSR-E soil moisture into the ISBA land surface scheme,” Journal of Geophysical Research, vol. 114, no. D20104, pp. 1-13, 2009, doi: 10.1029/2008JD011650.
[4] K. Deane, Smith and C. F. Cline, “Verification of existence of cubic zirconia at high temperature,” Discussions and Notes, vol. 45, no. 5, p. 249, 1962, doi: 10.1111/j.1151-2916.1962.tb11135.x.
[5] N. Djohan et al., “Crystalline structure and optical properties of thin film LiTaO3,” IOP Conference Series Earth and Environmental Science, vol. 284, pp. 1-8, 2019, doi: 10.1088/1755-1315/284/1/012039.
[6] T. Inoue et al., “Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders,” Nature, vol. 277, pp. 637-638, 1979, doi: 10.1038/277637a0.
[7] J. M. Crowley, Jamil Tahir-Kheli and W. A. Goddard, “Resolution of the Band Gap Prediction Problem for Materials Design,” The Journal of Physical Chemistry, vol. 7, pp. 1198-1203, 2016, doi: 10.1021/acs.jpclett.5b02870.
[8] J. Awaka et al., “Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12,” The Chemical Society of Japan, vol. 40, pp. 60¬-62, 2011, doi: 10.1246/cl.2011.60.
[9] J. Khatter, R. P. Chauhan, “Effect of temperature on properties of cadmium sulfide nanostructures synthesized by solvothermal method,” J Mater Sci Mater Electron, vol. 31, pp. 2676-2685, 2020, doi: 10.1007/s10854-019-02807-7.
[10] M. Moghaddam et al., “Improved optical and structural properties of cadmium sulfide nanostructures for optoelectronic applications,” Ceramics International, vol. 46, pp. 1-8, 2019, doi:10.1016/j.ceramint.2019.11.234.
[11] M. Zhang et al., “Tuning electrical and raman scattering properties of cadmium sulfide nanoribbons via surface charge transfer doping,” The Journal of Physical Chemistry, vol. 123, pp. 15794-15801, 2019, doi: 10.1021/acs.jpcc.9b02938.
[12] M. Tsay, “Journal self-citation study for semiconductor literature: Synchronous and diachronous approach,” Information Processing and Management, vol. 42, pp. 1567-1577, 2006, doi: 10.1016/j.ipm.2006.03.020.
[13] M. Tsay, H. Xu, C. Wu, “Journal co-citation analysis of semiconductor literature,” Scientometrics, vol. 57, no. 1, pp. 7-25, 2003, doi: 10.1023/a:1023667318934.
[14] M. Imran et al., “Modified eccentric descriptors of crystal cubic carbon,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 22, no. 7, pp. 1215-1228, 2019, doi: 10.1080/09720529.2019.1700922.
[15] R. Komanduria, N. Chandrasekarana, L. M. Raff, “Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel,” International Journal of Mechanical Sciences, vol. 43, pp. 2237-2260, 2001, doi: 10.1246/cl.2011.60.
[16] R. Ochoa-Landín et al., “Chemically deposited CdS by an ammonia-free process for solar cells window layers,” Solar Energy, vol. 84, pp. 208-214, 2010, doi: 10.1016/j.solener.2009.11.001.
[17] K. V. Shanavas et al., “First-principles study of the effect of organic ligands on the crystal structure of cds nanoparticles,” The Journal of Physical Chemistry C, vol. 116, pp. 6507-6511, 2012, doi: 10.1021/jp2079428.
[18] D. P. Simon et al., “Error analysis of continuous GPS position time series,” Journal of Geophysical Research, vol. 109, no. B03412, pp. 1-19, 2004, doi: 10.1029/2003JB002741.
[19] K. Stephen et al., “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis,” Journal of Applied Physics, vol. 82, no. 7, pp. 3334-3340, 1997, doi: 10.1063/1.365643.
[20] T. Triliana, E. C. M. Asih, “Analysis of students errors in solving probability based on Newman’s error analysis,” Journal of Physics Conference Series, vol. 1211, no. 012061, pp. 1-6, 2019, doi: 10.1088/1742-6596/1211/1/012061.
[21] D. S. Tsai et al., “A simple method for the determination of lattice parameters from powder X-Ray diffraction data,” Materials Transactions JIM, vol. 30, pp. 474-479, 1989, doi: 10.2320/matertrans1989.30.474.
[22] W. Gao et al., “Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures,” Journal Moleculs, vol. 22, no. 1496, pp. 1-12, 2017, doi: 10.3390/molecules22091496.
[23] W. Safriani et al., “Analysis of Students Errors on the Fraction Calculation Operations Problem,” Al-Jabar Jurnal Pendidikan Matematika, vol. 10, no. 2, pp. 307 – 318, 2019.
[24] Z. Jamal et al., “Lattice constants analysis of baxsr1-xtio3 ceramic for (x =0.3; 0.5 and 0.7) by visual basic program,” Journal of Nuclear and Related Technology, vol. 4, pp. 137-142, 2007, doi: 10.1.1.673.4536.
[25] Q. Zhang et al., “Microstructure and nanoindentation behavior of Cu composites reinforced with graphene nanoplatelets by electroless co deposition technique,” Scientific Reports, vol. 7, pp. 1-12, 2017, doi: 10.1038/s41598-017-01439-3.
[26] A. Kurniawan and Irzaman, “Android based XRD data analysis software design for cube crystal structure with analytic and cohen methods,” AIP Conf. Proc, vol. 2320, March 2021, doi: 10.1063/5.0037472.
[27] S. M. Sze, “Physics of Semiconductor Devices,” 2nd edition New York, John Wile & Sons Inc, 1981.
[28] G. S. Gildenblat and P. E. Schmidt, “Diamond (C),” Handbook on Semiconductor Parameters, vol. 1, pp. 58-76, 1992.

Downloads

Published

2021-10-30

How to Cite

Fikriah, K., Syaharani, T. A. ., Melinda, F. ., Lutfiah, L., Huwaidah, N. ., Vinanda, A. T. ., … Irzaman, I. (2021). ANALYSIS OF LATTICE PARAMETER, ERROR, AND THE BANDGAP ENERGY IN CADMIUM SULFIDE (CdS) SEMICONDUCTOR MATERIAL. Spektra: Jurnal Fisika Dan Aplikasinya, 6(2), 113–120. https://doi.org/10.21009/SPEKTRA.062.04

Most read articles by the same author(s)