THE PARAMETER ANALYSIS OF CUBICAL STRUCTURED CADMIUM TELLURIDE (CdTe) SEMICONDUCTOR MATERIALS

Authors

  • Sinta Puspita Apriliani Department of Physics, FMIPA, IPB University, Bogor, Jawa Barat 16680, Indonesia
  • Susi Susilawati Department of Physics, FMIPA, IPB University, Bogor, Jawa Barat 16680, Indonesia
  • Koharudin Koharudin Department of Physics, FMIPA, IPB University, Bogor, Jawa Barat 16680, Indonesia
  • Sarah Nabilah Department of Physics, FMIPA, IPB University, Bogor, Jawa Barat 16680, Indonesia
  • Dwi Lestariningsih Department of Physics, FMIPA, IPB University, Bogor, Jawa Barat 16680, Indonesia
  • Witri Desmulyani Department of Physics, FMIPA, IPB University, Bogor, Jawa Barat 16680, Indonesia
  • Anis Munir Rukyati Department of Physics, FMIPA, IPB University, Bogor, Jawa Barat 16680, Indonesia
  • Muhammad Fikri Fakhrurozi Department of Physics, FMIPA, IPB University, Bogor, Jawa Barat 16680, Indonesia
  • Stefiana Sondary Az Zahrah Department of Physics, FMIPA, IPB University, Bogor, Jawa Barat 16680, Indonesia
  • Irmansyah Irmansyah Department of Physics, FMIPA, IPB University, Bogor, Jawa Barat 16680, Indonesia
  • Irzaman Irzaman Department of Physics, FMIPA, IPB University, Bogor, Jawa Barat 16680, Indonesia

DOI:

https://doi.org/10.21009/SPEKTRA.062.05

Keywords:

Cadmium Telluride (CdTe), gap energy, lattice parameter, Cramer-Cohen method

Abstract

Cadmium telluride (CdTe) semiconductor materials will be used to analyze the energy gap, lattice parameters, and error value of these cubical structured crystal materials. The data that we used to be analyzed is using data from the International Center for Diffraction Data (ICDD) that used the X-ray Diffraction (XRD) method. This research has been successfully analyzing energy gap, lattice parameters, and the error value of Cadmium telluride (CdTe) materials which have a cube-shaped crystal structure. The result of the gap energy analysis of Cadmium telluride (CdTe) with a cubical structure yields a value of 1.43 eV. The lattice parameters of Cadmium telluride (CdTe) with a cubical structure analyzed by the Cramer-Cohen method yields a value of a = b = c = 9.922 Å. The error value of Cadmium telluride (CdTe) with a cubical stcucture yields a value of 6.75 x 10-4 %.

References

[1] D. Bonnet and P. Meyers, “Cadmium-telluride - Material for thin film solar cells,” J. Mater.
Res., vol. 13, no. 10, pp. 2740–2753, 1998, doi: 10.1557/JMR.1998.0376.

[2] S. Li, Z. Peng, J. Zheng, and F. Pan, “Optimizing CdTe-metal interfaces for high performance
solar cells,” J. Mater. Chem. A, vol. 5, no. 15, pp. 7118–7124, 2017, doi: 10.1039/c7ta00698e.
[3] S. Uličná, P. J. M. Isherwood, P. M. Kaminski, J. M. Walls, J. Li, and C. A. Wolden,
“Development of ZnTe as a back contact material for thin film cadmium telluride solar cells,”
Vacuum, vol. 139, pp. 159–163, 2017, doi: 10.1016/j.vacuum.2017.01.001.
[4] O. Oklobia, G. Kartopu, and S. J. C. Irvine, “Properties of Arsenic-Doped ZnTe thin films as a
back contact for CdTe Solar Cells,” Materials (Basel)., vol. 12, no. 22, 2019, doi:
10.3390/ma12223706.
[5] W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction
coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater., vol. 15, no. 14, pp.
2854–2860, 2003, doi: 10.1021/cm034081k.
[6] A. Lamichhane and N. M. Ravindra, “Energy gap-refractive index relations in perovskites,”
Materials (Basel)., vol. 13, no. 8, 2020, doi: 10.3390/MA13081917.
[7] M. Kurzyna and T. Kwapiński, “Electron pumping and spectral density dynamics in energy-
gapped topological chains,” Appl. Sci., vol. 11, no. 2, pp. 1–14, 2021, doi:
10.3390/app11020772.
[8] A. B. Lauritsen, “The BCS energy gap at low density,” Lett. Math. Phys., vol. 111, no. 1, pp.
1–16, 2021, doi: 10.1007/s11005-021-01358-5.
[9] N. M. Ravindra, P. Ganapathy, and J. Choi, “Energy gap-refractive index relations in
semiconductors-an overview,” Infrared Phys. & Tech., vol. 50, no. 1, pp. 1-9. 2006, doi:
10.1016/j.infrared.2006.04.001.
[10] J. Piprek, Semiconductor Optoelectronic Devices. 1 st edition. San Diego : Academic Press,
2003.
[11] S. M. Sze, Physics of Semiconductor Devices. 2 nd edition. New York : John Wile & Sons, Inc,
1981.
[12] M. Frentrup, N. Hatui, T. Wernicke, J. Stellmach, A. Bhattacharya, and M. Kneissl,
“Determination of lattice parameters, strain state and composition in semipolar III-nitrides
using high resolution X-ray diffraction,” J. Appl. Phys., vol. 114, no. 21, 2013, doi:
10.1063/1.4834521.
[13] R. D. Horning and J. L. Staudenmann, “CdTe thermal parameters studied by single-crystal x-
ray diffraction,” Phys. Rev. B, vol. 36, no. 5, pp. 2873–2874, 1987, doi:
10.1103/PhysRevB.36.2873.
[14] I. I. Kyrchei, “Cramer’s rule for quaternionic systems of linear equations,” J. Math. Sci., vol.
155, no. 6, pp. 839–858, 2008, doi: 10.1007/s10958-008-9245-6.
[15] R. C. Mittal and A. Al-Kurdi, “Application of the Cramer rule in the solution of sparse systems
of linear algebraic equations,” J. Comput. Appl. Math., vol. 136, no. 1–2, pp. 1–15, 2001, doi:
10.1016/S0377-0427(00)00572-0.
[16] A. Kurniawan and Irzaman, “Android based XRD data analysis software design for cube
crystal structure with analytic and cohen methods,” AIP Conf. Proc., vol. 2320, no. March,
2021, doi: 10.1063/5.0037472.
[17] D. Pauly and I. Yousept, “A posteriori error analysis for the optimal control of magneto-static
fields,” ESAIM Math. Model. Numer. Anal., vol. 51, no. 6, pp. 2159–2191, 2017, doi:
10.1051/m2an/2017008.
[18] M. Alvarez, G. N. Gatica, and R. Ruiz-Baier, “A posteriori error analysis for a viscous flow-
transport problem â,” ESAIM Math. Model. Numer. Anal., vol. 50, no. 6, pp. 1789–1816, 2016,
doi: 10.1051/m2an/2016007.
[19] Q. Zhou and X. Liu, “Analysis of errors of derived slope and aspect related to DEM
datproperties,” Comput. Geosci., vol. 30, no. 4, pp. 369–378, 2004, doi:
10.1016/j.cageo.2003.07.005.
[20] D. Borek, “CCP4 study weekend Measurement errors and their consequences in protein
crystallography CCP4 study weekend,” pp. 2031–2038, 2003.

[21] P. Kusumawardhani, “The analysis of errors of omission in english narrative composition
made by EFL students,” JELE (Journal English Lang. Educ., vol. 3, no. 2, p. 84, 2017, doi:
10.26486/jele.v3i2.257.
[22] P. Kharmilah and D. Narius, “Error analysis in writing discussion text made by students at
English department of Universitas Negeri Padang,” J. English Lang. Teach., vol. 8, no. 3, pp.
327–335, 2019.
[23] C. J. Humphreys, “The significance of Braggs law in electron diffraction and microscopy, and
Braggs second law,” Acta Crystallogr. Sect. A Found. Crystallogr., vol. 69, no. 1, pp. 45–50,
2013, doi: 10.1107/S0108767312047587.
[24] H. J. Goldsmid and J. W. Sharp, “Estimation of the thermal band gap of a semiconductor from
Seebeck measurements,” J. Electron. Mater., vol. 28, no. 7, pp. 869–872, 1999, doi:
10.1007/s11664-999-0211-y.

Downloads

Published

2021-10-30

How to Cite

Apriliani, S. P. ., Susilawati, S. ., Koharudin, K., Nabilah, S. ., Lestariningsih, D. ., Desmulyani, W. ., … Irzaman, I. (2021). THE PARAMETER ANALYSIS OF CUBICAL STRUCTURED CADMIUM TELLURIDE (CdTe) SEMICONDUCTOR MATERIALS. Spektra: Jurnal Fisika Dan Aplikasinya, 6(2), 121–128. https://doi.org/10.21009/SPEKTRA.062.05

Most read articles by the same author(s)