Development of the Physics Practicum Apparatus based on Microcontroller: A Prototype Constructed from Misconceptions of Basic Kinematics Concepts
DOI:
https://doi.org/10.21009/1.10213Keywords:
prototype, misconceptions, basic kinematics, graph, P-PAMAbstract
This research aims to develop a prototype of the P-PAM (Physics Practicum Apparatus based on Microcontroller), specifically designed to address misconceptions in basic kinematics. The method employed for the prototype development follows the ADPT model (Analysis, Design, Prototyping, and Testing). The misconceptions identified during the analysis process include: (1) If the object's position is in the positive coordinate, it indicates that the object is moving forward; (2) The acceleration of an object is proportional to its instantaneous velocity. The practicum apparatus designed to address Misconception 1 is intended to measure the distance of an object, with data processed using Arduino Uno and transmitted to a PC via Bluetooth. The distance data is then processed using Python to generate information regarding distance, velocity, and acceleration, which are displayed in graphs over time. The apparatus for addressing Misconception 2 presents initial and final velocity data, as well as the acceleration of an object rolling past two sensors. The prototype of the first practicum apparatus can generate real-time graphs of position versus time and speed versus time. The second apparatus prototype provides initial velocity, final velocity, and acceleration data. Additionally, the device can demonstrate uniform acceleration for different initial speeds, as the incline is kept constant. There are 7 out of 10 acceleration data that fall within the confidence interval at the 96% confidence level. The prototype we created can present scientific facts from two misconceptions in basic kinematics material, in addition, our prototype can be used in learning that focuses on conceptual change.
References
Admoko, S. (2023). Could Physics Teachers Also Have Misconceptions on Basic Kinematics?. In Journal of Physics: Conference Series, 2623(1), p. 012025.
Ali, R. H., Rahmad, M., Islami, N., & Syafii, M. (2020). Design of Straight Motion Experiment using Electric Motor Ticker Timer Based on Microcontroller. In Journal of Physics: Conference Series, 1655(1), p. 012004.
Anggoro, S., Widodo, A., Suhandi, A., & Treagust, D.F. (2019). Using a Discrepant Event to Facilitate Preservice Elementary Teachers' Conceptual Change about Force and Motion. Eurasia Journal of Mathematics, Science and Technology Education, 15(8).
Asrowi, R.H., Budi, E., & Nasbey, H. (2023). Development of the Wimshurst Machine as a Learning Media on Static Electricity Material for Junior High Schools. Current STEAM and Education Research, 1(2), pp. 42-52. doi: doi.org/10.58797/ cser.010201
Baifeto, E.P.F., Samsudin, A., Efendi, R. & Athiyyah, R. (2022). Developing PHYCOM (Physics Comics) on Newton’s Law Material for 10th Grade High School Students. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 8(2), pp.175-192.
Bakri, F., Sani, T.N., & Permana, H. (2023). Physics Textbooks Feature Augmented Reality Technology-Based Media For Kinematics Material: Training 21st Century Skills For High School Students. Current STEAM and Education Research, 1(1), pp. 13-22. doi: doi.org/10.58797/cser.010103
Camburn, B., Vimal, V., Julie, L., David, A., Daniel, J., Richard, C., Kevin, O., & Kristin, W. (2017). "Design prototyping methods: state of the art in strategies, techniques, and guidelines." Design Science 3 (2017): e13.
Candraditya, R., Ningtyas, C.P., Aziz M.R.A., Fadilah, L.S., Maharatri, A.D., & Gibran, A.M. (2024). Understanding Cyclotron Motion: A Visual Approach to Electron Dynamics in Electric and Magnetic Fields. Current STEAM and Education Research, 2(2), pp. 81-88. doi: doi.org/10.58797/cser.020202.
Cashman, A., & O’Mahony, T. (2022). Student understanding of kinematics: a qualitative assessment. European Journal of Engineering Education, 47(6), pp. 886-909.
Damayanti, T. & Sinuraya, J. (2023). Analysis of The Utilization of Physics Laboratories in Several High Schools/Islamic Schools in Langkat Regency. Current STEAM and Education Research, 1(1), pp. 23-32. doi: doi.org/10.58797/cser.010104
Darman, D.R., Suhandi, A., Kaniawati, I., & Samsudin, A. (2023). Designing of virtual laboratory on elasticity for Physics learning. In Journal of Physics: Conference Series, 2596(1), p. 012061.
Doyan, A., Qahfi, B.A., & Susilawati, S. (2023). Determining the Viscosity Coefficient of Fluids Using a Simple Viscosity Practical Tool Aided by Arduino Uno and a Magnetic Sensor. AMPLITUDO: Journal of Science and Technology Innovation, 2(1), pp.34-37.
Ďuriš, V., Vasileva, L.N., Chumarov, S.G., & Trofimova, I.G. (2023). Development of Creative Thinking Skills of Bachelor Engineers Based on STEM Technology. TEM Journal, 12(2).
Fongsamut, K., Tanasittikosol, M., & Phaksunchai, M. (2022). Effectiveness of the simulation-based learning (SBL) assisted with scaffolding approach to address students’ misconceptions about projectile motion. Physics Education, 58(2), p.025002.
Handhika, J., Istiantara, D.T., & Astuti, S.W. (2019). Using graphical presentation to reveals the student’s conception of kinematics. In Journal of Physics: Conference Series, 1321(3), p. 032064.
Huda, I., Girei, M.M., & Keizi, F. (2023). Development of a Practical Tool for Linear Momentum Collisions Using a Microcontroller. Journal of Educational Technology and Learning Creativity, 1(2), pp.42-49.
Johan, H., Putri, D. H., Risdianto, E., Johan, S., Sudirman, S., & Widiasih, W. (2023). Development of Supplementary Basic Physics Practicum Based on Problem-Solving Method Assisted with Augmented Reality (AR) Technology. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 9(1), pp. 41–54. doi: https://doi.org/10.21009/1.09105
Kondaveeti, H.K., Kumaravelu, N.K., Vanambathina, S.D., Mathe, S.E., & Vappangi, S. (2021). A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations. Computer Science Review, 40, p.100364.
Kurniawan, F., Samsudin, A., Chandra, D.T., Sriwati, E., & Coştu, B. (2023). IMPAS: Modification of the PAS Questionnaire to Measure Attitudes of High School Students towards Physics in Indonesia. Indonesian Journal on Learning and Advanced Education (IJOLAE), 5(2), pp. 198-216.
Lin, J., Xing, Y., Hu, Y., Zhang, J., Bao, L., Luo, K., ... & Xiao, Y. (2023). Inhibitory control involvement in overcoming the position-velocity indiscrimination misconception among college physics majors. Physical Review Physics Education Research, 19(1), p. 010112.
Mane, V. S., Pandharipande, M. M., Joshi, H. J., & Kotalwar, S.S. (2021). Manual, Internet and Bluetooth all-in-one Smart Home (MIB-AIO). In 2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE) (pp. 187-191). IEEE.
Molotnikov, V. & Molotnikova, A. (2022). Kinematics. In Theoretical and Applied Mechanics (pp. 53-106). Cham: Springer International Publishing.
Nasution, R.H., Wijaya, T.T., Putra, M.J.A., & Hermita, N. (2021). Analisis miskonsepsi siswa SD pada materi gaya dan gerak. Journal of Natural Science and Integration, 4(1), pp.11-21.
Putri, A.H., Samsudin, A., & Suhandi, A. (2022). Exhaustive studies before covid-19 pandemic attack of students’ conceptual change in science education: a literature review. Journal of Turkish Science Education, 19(3).
Rak, F. & Wiora, J. (2021). Comparison of ESP programming platforms. Computer science and information technologies, 2(2), pp. 77-86.
Resbiantoro, G. & Setiani, R. (2022). A review of misconception in physics: the diagnosis, causes, and remediation. Journal of Turkish Science Education, 19(2).
Rusilowati, A., Susanti, R., Sulistyaningsing, T., Asih, T.S.N., Fiona, E. & Aryani, A. (2021). Identify misconception with multiple choice three tier diagnostik test on newton law material. In Journal of Physics: Conference Series, 1918(5), p. 052058.
Samsudin, A., et al. (2021). Reconstructing students’ misconceptions on work and energy through the PDEODE* E tasks with think-pair-share. Journal of Turkish Science Education, 18(1), pp. 118-144.
Samsudin, A., et al. (2023). Identifying Javanese Students' Conceptions on Fluid Pressure with Wright Map Analysis of Rasch. Journal of Natural Science and Integration, 6(2), pp. 173-185.
Sari, N.A., Santyasa, I.W., & Gunadi, I.G.A. (2021). The effect of conceptual change models on students' conceptual understanding in learning physics. Jurnal Pendidikan Fisika Indonesia, 17(2), pp.94-105.
Setyarini, R. & Admoko, S. (2021). Penerapan strategi pembelajaran konflik kognitif dalam mereduksi miskonsepsi siswa pada materi gelombang bunyi. Inovasi Pendidikan Fisika, 10(3).
Suárez, M., Pandiella, S., & Benegas, J. (2023). Tutorials+ PhET: a simple and efficient active-learning approach for the teaching of kinematics of circular motion in a technically-oriented high school. Physics Education, 58(3), 035005.
Suhandi, A., Samsudin, A., Suhendi, E., Hermita, N., Syamsiah, E.N., & Costu, B. (2020). Facilitating conceptual changes of high school students regarding concepts in static electricity and DC circuits through the use of VMSCDCCText. Universal Journal of Educational Research, 8(3), pp.815-822.
Suhandi, A., Surtiana, Y., Husnah, I., Setiawan, W., Siahaan, P., Samsudin, A., & Costu, B. (2020). Fostering High School Students' Misconception about Boiling Concept Using Conceptual Change Laboratory (CCLab) Activity. Universal Journal of Educational Research, 8(6), pp. 2211-2217.
Sulsilah, H., Hidayat, A., Samsudin, A., & Yoga, P.D. (2022). Developing mobile based activity in learning motion (Moba-Motion): An innovative app. In AIP Conference Proceedings, 2468(1).
Sundaygara, C., Gusi, L.A.R.P., Pratiwi, H.Y., Ayu, H.D., Jufriadi, A., & Hudha, M.N. (2021). Identification students’ misconception using four-tier diagnostic test on Newton Law subject. In Journal of Physics: Conference Series, 1869(1), p. 012157.
Suseno, N., Riswanto, R., Salim, M. B., Hidayatullah, D., & Rasagama, I. G. (2021). How to Manage an Effective Laboratory for Science Learning in Schools?. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 7(2), pp. 191–200. doi: https://doi.org/10.21009/1.07211
Syamsiah, E.N., Maknun, J., Syamsudin, A., Muslim, M., Hasanah, L. & Suhandi, A. (2019). Eleventh grade students’ conception analysis: a case-study on heat transfer. In Journal of Physics: Conference Series, 1280(5), p. 052066.
Taber, K.S. (2017). The nature of student conceptions in science. In Science education, pp. 119-131. Brill.
Timothy, V. et al., (2023). Fostering Preservice Teachers’ Diagnostic Competence in Identifying Students’ Misconceptions in Physics. Int J of Sci and Math Educ, 21, pp. 1685–1702. doi: https://doi.org/10.1007/s10763-022-10311-4
Vosniadou, S. (2020). Students’ misconceptions and science education. In Oxford research encyclopedia of education.
Wibowo, F.C., Suhandi, A., Rusdiana, D., Ruhiat, Y., Darman, D.R. & Samsudin, A. (2017). Effectiveness of microscopic virtual simulation (MVS) for conceptualizing students’ conceptions on phase transitions. Advanced Science Letters, 23(2), pp. 839-843.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Endah Nur Syamsiah, Muhammad Rizka Taufani, Adam Hadiana Aminudin, Rahadian Sri Pamungkas, Reno Muhammad Fadilla, Fatih Najah Nabilah
This work is licensed under a Creative Commons Attribution 4.0 International License.