In Silico Study of the potency of Drynaria rigidula (Sw.) Bedd. (Polypodiaceae) compounds in breast cancer therapy targeting AKT1 protein pathways
DOI:
https://doi.org/10.21009/bioma.v20i2.49340Keywords:
AKT1, Polypodium, in-silico, Anti-cancer, Drynaria rigidula, PteridophytesAbstract
Breast cancer is the second most prevalent cancer globally. One of the key pathways involved in breast cancer is the PI3K/Akt mechanism. A natural compound with potential that has not been extensively studied is Drynaria rigidula (Sw.) Bedd., a Polypodiaceous fern native to Indonesia and is commonly used in traditional medicine. This study aims to explore the potential of Drynaria rigidula as an anti-breast cancer agent. The method used in silico analysis by collecting data from several web servers such as SwissADME (https://www.swissadme.ch/) with the parameters Lipinski’s rule of five, Veber, Egan, and Way2Drug for biological activity. The protein used in this study is AKT1 (PDB ID: 6HHF), obtained from the RCSB database. Molecular docking analysis was conducted using PyRx software with visualization performed in Biovia Discovery Studio. The results showed that several compounds, such as 3,4-dihydroxybenzoic acid, fern-9(11) ene, Stigmasterol, dan Campesterol, had RMSD values < 3.0 Å and binding affinities of -9.4, -9.2, -7.6, and -7.6 respectively. These results were compared with the control ligand AZD5363 and doxorubicin, which had a binding affinity from each other are -8.3 and -7.4. Therefore, the docking results indicate that compounds from Drynaria rigidula are predicted to have potential as anti-cancer agents.
References
Aborehab, N. M., Elnagar, M. R., & Waly, N. E. (2021). Gallic acid potentiates the apoptotic effect of paclitaxel and carboplatin via overexpression of Bax and P53 on the MCF‐7 human breast cancer cell line. Journal of Biochemical and Molecular Toxicology, 35(2), e22638.
Adlini, M. N., Hartono, A., Khairani, M., Tanjung, I. F., & Khairuna, K. (2021). Identifikasi Tumbuhan Paku (Pteridophyta) di Universitas Islam Negeri (UIN) Sumatera Utara. Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati, 87–94. https://doi.org/10.24002/BIOTA.V6I2.3842
Al-Bahlani, S. M., Lakhtakia, R., Al-Jaaidi, S. S., & ... (2021). Correlation of expression of Akt1 and E2F1 and their phosphorylated forms in breast cancer patients with clinicopathological parameters. Journal of Molecular …. https://doi.org/10.1007/s10735-021-09973-1
Nugraha, A. S., Haritakunc, R., & Keller, P. A. (2013). Constituents of the Indonesian Epiphytic Medicinal Plant Drynaria rigidula. Natural Product Communications 8(6):703-705. https://doi.org/10.1177/1934578X1300800606
BIOVIA Discovery Studio | Dassault Systèmes. (n.d.). Retrieved April 1, 2024, from https://www.3ds.com/products/biovia/discovery-studio
Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
Gao, S. P., Kiliti, A. J., Zhang, K., Vasani, N., Mao, N., & ... (2021). AKT1 E17K inhibits cancer cell migration by abrogating β-catenin signaling. Molecular Cancer …. https://aacrjournals.org/mcr/article-abstract/19/4/573/672864
Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
Nugraha, A. S., Wangchuk, T., Willis, A. C., Haritakun, R., Sujadmiko, H., & Keller, P. A. (2019). Phytochemical and pharmacological studies on four Indonesian epiphytic medicinal plants: Drynaria rigidula, Hydnophytum formicarum, Usnea misaminensis, and Calymperes schmidtii. Natural Product Communications, 14(6). https://doi.org/10.1177/1934578X19856792
RCSB PDB: Homepage. (n.d.). Retrieved June 24, 2023, from https://www.rcsb.org/
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Ca a Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
WHO, & Globocan. (2022). Global Cancer Observatory.
Wirdayanti, & Nery Sofiyanti. (2019). View of Skrining Fitokimia Lima Jenis Tumbuhan Paku Polypodiaceae Dari Provinsi Riau. 2. https://ojs.uajy.ac.id/index.php/biota/article/view/2470/1426
Wang, H., Oo Khor, T., Shu, L., Su, Z.-Y., Fuentes, F., Lee, J.-H., & Tony Kong, A.-N. (2012). Plants vs. Cancer: A Review on Natural Phytochemicals in Preventing and Treating Cancers and Their Druggability. Anti-Cancer Agents in Medicinal Chemistry. https://doi.org/10.2174/187152012803833026
Wang, H., Wang, Z., Zhang, Z., Liu, J., & Hong, L. (2023). β-Sitosterol as a promising anticancer agent for chemoprevention and chemotherapy: mechanisms of action and future prospects. Advances in Nutrition, 14(5), 1085-1110. https://doi.org/10.1016/j.advnut.2023.05.013
Way2Drug - main. (n.d.). Retrieved March 31, 2024, from https://www.way2drug.com/passonline/
Wei, Y., Li, S., Li, Z., Wan, Z., & Lin, J. (2022). Interpretable-ADMET: a web service for ADMET prediction and optimization based on deep neural representation. Bioinformatics (Oxford, England), 38(10), 2863–2871. https://doi.org/10.1093/bioinformatics/btac192
Widyananda, M. H., Puspitarini, S., Rohim, A., Khairunnisa, F. A., Jatmiko, Y. D., Masruri, M., & Widodo, N. (2022). . F1000Research, 11, 1000. https://doi.org/10.12688/f1000research.75735.1
Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics (Oxford, England), 35(6), 1067–1069. https://doi.org/10.1093/BIOINFORMATICS/BTY707
Zhang, X., Mu, X., Huang, O., Xie, Z., Jiang, M., Geng, M., & Shen, K. (2013). Luminal Breast Cancer Cell Lines Overexpressing ZNF703 Are Resistant to Tamoxifen Through Activation of Akt/mTOR Signaling. Plos One, 8(8), e72053. https://doi.org/10.1371/journal.pone.0072053
Zhang, X., Wang, J., Zhu, L., Wang, X., Meng, F., Xia, L., & Zhang, H. (2022). Advances in Stigmasterol on its anti-tumor effect and mechanism of action. Frontiers in Oncology, 12, 1101289. https://doi.org/10.3389/fonc.2022.1101289
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Naufal Ma'arif, Sefti Adelia, Alifia Dwinanti Hakamashe, Fadila Nur’anfa Putri, Nailul Rahmi Aulya, Supriyatin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.